Impact of macronutrient supplements on later growth of children born preterm or small for gestational age: A systematic review and meta-analysis of randomised and quasirandomised controlled trials
Autoři:
Luling Lin aff001; Emma Amissah aff001; Gregory D. Gamble aff001; Caroline A. Crowther aff001; Jane E. Harding aff001
Působiště autorů:
Liggins Institute, University of Auckland, Auckland, New Zealand
aff001
Vyšlo v časopise:
Impact of macronutrient supplements on later growth of children born preterm or small for gestational age: A systematic review and meta-analysis of randomised and quasirandomised controlled trials. PLoS Med 17(5): e32767. doi:10.1371/journal.pmed.1003122
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pmed.1003122
Souhrn
Background
Nutritional supplements may improve short-term growth of infants born small (preterm or small for gestational age), but there are few data on long-term effects and concerns that body composition may be adversely affected. Effects also may differ between girls and boys. Our systematic review and meta-analysis assessed the effects of macronutrient supplements for infants born small on later growth.
Methods and findings
We searched OvidMedline, Embase, Cochrane CENTRAL, and Cochrane Database of Systematic Reviews from inception to January 30, 2020, and controlled-trials.com, clinicaltrials.gov, and anzctr.org.au on January 30, 2020. Randomised or quasirandomised trials were included if the intention was to increase macronutrient intake to improve growth or development of infants born small and growth was assessed after discharge. Primary outcome was body mass index (BMI) in childhood. Data were pooled using random-effect models. Outcomes were evaluated in toddlers (< 3 years), childhood (3 to 8 years), adolescence (9 to 18 years), and adulthood (>18 years). Forty randomised and 2 quasirandomised trials of variable methodological quality with 4,352 infants were included. Supplementation did not alter BMI in childhood (7 trials, 1,136 children; mean difference [MD] −0.10 kg/m2, [95% confidence interval (CI) −0.37 to 0.16], p = 0.45). In toddlers, supplementation increased weight (31 trials, 2,924 toddlers; MD 0.16 kg, [0.01 to 0.30], p = 0.03) and length/height (30 trials, 2,889 toddlers; MD 0.44 cm, [0.10 to 0.77], p = 0.01), but not head circumference (29 trials, 2,797 toddlers; MD 0.15 cm, [−0.03 to 0.33], p = 0.10). In childhood, there were no significant differences between groups in height (7 trials, 1,136 children; MD 0.22 cm, [−0.48 to 0.92], p = 0.54) or lean mass (3 trials, 354 children; MD −0.07 kg, [−0.98 to 0.85], p = 0.88), although supplemented children appeared to have higher fat mass (2 trials, 201 children; MD 0.79 kg, [0.19 to 1.38], p = 0.01). In adolescence, there were no significant differences between groups in BMI (2 trials, 216 adolescents; MD −0.48 kg/m2, [−2.05 to 1.08], p = 0.60), height (2 trials, 216 adolescents; MD −0.55 cm, [−2.95 to 1.86], p = 0.65), or fat mass (2 trials, 216 adolescents; MD −1.3 5 kg, [−5.76 to 3.06], p = 0.55). In adulthood, there also were no significant differences between groups in weight z-score (2 trials, 199 adults; MD −0.11, [−0.72 to 0.50], p = 0.73) and height z-score (2 trials, 199 adults; MD −0.07, [−0.36 to 0.22], p = 0.62). In subgroup analysis, supplementation was associated with increased length/height in toddler boys (2 trials, 173 boys; MD 1.66 cm, [0.75 to 2.58], p = 0.0003), but not girls (2 trials, 159 girls; MD 0.15 cm, [−0.71 to 1.01], p = 0.74). Limitations include considerable unexplained heterogeneity, low to very low quality of evidence, and possible bias due to low or unbalanced followup.
Conclusions
In this systematic review and meta-analysis, we found no evidence that early macronutrient supplementation for infants born small altered BMI in childhood. Although supplements appeared to increase weight and length in toddlers, effects were inconsistent and unlikely to be clinically significant. Limited data suggested that supplementation increased fat mass in childhood, but these effects did not persist in later life.
PROSPERO registration: CRD42019126918.
Klíčová slova:
Adolescents – Breast milk – Fats – Infants – Metaanalysis – Nutrition – Systematic reviews – Toddlers
Zdroje
1. Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller AB, et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health. 2013;10 Suppl 1:S2.
2. Scharf RJ, Stroustrup A, Conaway MR, DeBoer MD. Growth and development in children born very low birthweight. Arch Dis Child Fetal Neonatal Ed. 2016;101(5):F433–F8. doi: 10.1136/archdischild-2015-309427 26627552
3. Katz J, Lee ACC, Kozuki N, Lawn JE, Cousens S, Blencowe H, et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet. 2013;382(9890):417–25. doi: 10.1016/S0140-6736(13)60993-9 23746775
4. Christian P, Lee SE, Angel MD, Adair LS, Arifeen SE, Ashorn P, et al. Risk of childhood undernutrition related to small-for-gestational age and preterm birth in low- and middle-income countries. Int J Epidemiol. 2013;42(5):1340–55. doi: 10.1093/ije/dyt109 23920141
5. Embleton NE, Pang N, Cooke RJ. Postnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants? Pediatrics. 2001;107(2):270–3. doi: 10.1542/peds.107.2.270 11158457
6. Euser AM, de Wit CC, Finken MJ, Rijken M, Wit JM. Growth of preterm born children. Horm Res. 2008;70(6):319–28. doi: 10.1159/000161862 18953169
7. Saggese G, Fanos M, Simi F. SGA children: auxological and metabolic outcomes—the role of GH treatment. J Matern Fetal Neonatal Med. 2013;26 Suppl 2:64–7.
8. Hay WW Jr. Nutritional requirements of extremely low birthweight infants. Acta Paediatr Suppl. 1994;402:94–9. 7841630
9. Cooke RW. Conventional birth weight standards obscure fetal growth restriction in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2007;92(3):F189–92. doi: 10.1136/adc.2005.089698 16547077
10. Rustico SE, Calabria AC, Garber SJ. Metabolic bone disease of prematurity. J Clin Transl Endocrinol. 2014;1(3):85–91. doi: 10.1016/j.jcte.2014.06.004 29159088
11. Embleton N, Wood CL. Growth, bone health, and later outcomes in infants born preterm. J Pediatr (Rio J). 2014;90(6):529–32.
12. Rehman MU, Narchi H. Metabolic bone disease in the preterm infant: current state and future directions. World J Methodol. 2015;5(3):115–21. doi: 10.5662/wjm.v5.i3.115 26413483
13. Lucas A, Morley R, Cole TJ. Randomised trial of early diet in preterm babies and later intelligence quotient. BMJ. 1998;317(7171):1481–7. doi: 10.1136/bmj.317.7171.1481 9831573
14. Lucas A, Morley R, Cole TJ, Gore SM. A randomised multicentre study of human milk versus formula and later development in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1994;70(2):F141–6. doi: 10.1136/fn.70.2.f141 8154907
15. Kumar RK, Singhal A, Vaidya U, Banerjee S, Anwar F, Rao S. Optimizing nutrition in preterm low birth weight infants-consensus summary. Front Nutr. 2017;4:20. doi: 10.3389/fnut.2017.00020 28603716
16. Isaacs EB, Morley R, Lucas A. Early diet and general cognitive outcome at adolescence in children born at or below 30 weeks gestation. J Pediatr. 2009;155(2):229–34. doi: 10.1016/j.jpeds.2009.02.030 19446846
17. Brown JVE, Embleton ND, Harding JE, McGuire W. Multi-nutrient fortification of human milk for preterm infants. Cochrane Database Syst Rev. 2016(5):CD000343. doi: 10.1002/14651858.CD000343.pub3 27155888
18. Belfort MB, Rifas-Shiman SL, Sullivan T, Collins CT, McPhee AJ, Ryan P, et al. Infant growth before and after term:eEffects on neurodevelopment in preterm infants. Pediatrics. 2011;128(4):E899–E906. doi: 10.1542/peds.2011-0282 21949135
19. Belfort MB, Gillman MW, Buka SL, Casey PH, McCormick MC. Preterm infant linear growth and adiposity gain: trade-offs for later weight status and intelligence quotient. J Pediatr. 2013;163(6):1564–U71. doi: 10.1016/j.jpeds.2013.06.032 23910982
20. Euser AM, Finken MJJ, Keijzer-Veen MG, Hille ETM, Wit JM, Dekker FW, et al. Associations between prenatal and infancy weight gain and BMI, fat mass, and fat distribution in young adulthood: a prospective cohort study in males and females born very preterm. Am J Clin Nutr. 2005;81(2):480–7. doi: 10.1093/ajcn.81.2.480 15699238
21. Zarrati M, Shidfar F, Razmpoosh E, Nezhad FN, Keivani H, Hemami MR, et al. Does low birth weight predict hypertension and obesity in schoolchildren? Ann Nutr Metab. 2013;63(1–2):69–76. doi: 10.1159/000351869 23942014
22. Ong KK, Loos RJ. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Paediatr. 2006;95(8):904–8. doi: 10.1080/08035250600719754 16882560
23. Peacock JL, Marston L, Marlow N, Calvert SA, Greenough A. Neonatal and infant outcome in boys and girls born very prematurely. Pediatr Res. 2012;71(3):305–10. doi: 10.1038/pr.2011.50 22258087
24. Cooke RJ, Embleton ND, Griffin IJ, Wells JC, McCormick KP. Feeding preterm infants after hospital discharge: growth and development at 18 months of age. Pediatr Res. 2001;49(5):719–22. doi: 10.1203/00006450-200105000-00018 11328958
25. Young L, Embleton ND, McGuire W. Nutrient-enriched formula versus standard formula for preterm infants following hospital discharge. Cochrane Database Syst Rev. 2016(12): CD004696.
26. Young L, Embleton ND, McCormick FM, McGuire W. Multinutrient fortification of human breast milk for preterm infants following hospital discharge. Cochrane Database of Syst Rev. 2013(2):CD004866.
27. Higgins JPT, Green S (editors), The Cochrane Collaboration. Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011] 2011 [cited 2019 Apr 9]. https://training.cochrane.org/handbook
28. Schünemann H, Brozek J, Guyatt G, Oxman A, editors. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. 2013 [cited 2019 Apr 9]. https://gdt.gradepro.org/app/handbook/handbook.html
29. GRADEpro GDT: GRADEpro Guideline Development Tool [Software]. McMaster University, 2015 (developed by Evidence Prime, Inc.). gradepro.org.
30. Review Manager (RevMan) [Computer program]. Version 5.3,. The Nordic Cochrane Centre, The Cochrane Collaboration, 2014: Copenhagen.
31. Brooke OG, Kinsey JM. High energy feeding in small for gestation infants. Arch Dis Child. 1985;60(1):42–6. doi: 10.1136/adc.60.1.42 3882059
32. Fewtrell MS, Morley R, Abbott RA, Singhal A, Stephenson T, MacFadyen UM, et al. Catch-up growth in small-for-gestational-age term infants: a randomized trial. Am J Clin Nutr. 2001;74(4):516–23. doi: 10.1093/ajcn/74.4.516 11566651
33. Lin YF, Hsieh KS, Chen YY. Nutrient-enriched versus standard term formula feeding in disproportionately small for gestational age infants. Clin Neonatology. 2004;11(2):36–9.
34. Biasini A, Marvulli L, Neri E, China M, Stella M, Monti F. Growth and neurological outcome in ELBW preterms fed with human milk and extra-protein supplementation as routine practice: do we need further evidence? J Matern Fetal Neonatal Med. 2012;25 Suppl 4:72–4.
35. Davies DP. Adequacy of expressed breast milk for early growth of preterm infants. Arch Dis Child. 1977;52(4):296–301. doi: 10.1136/adc.52.4.296 558739
36. Dogra S, Thakur A, Garg P, Kler N. Effect of differential enteral protein on growth and nurodevelopment in infants <1500 g: a randomized controlled trial. J Pediatr. 2017;64(5):e126–e32.
37. Lucas A, Morley R, Cole TJ, Gore SM, Davis JA, Bamford MF, et al. Early diet in preterm babies and developmental status in infancy. Arch Dis Child. 1989;64(11):1570–8. doi: 10.1136/adc.64.11.1570 2690739
38. Lucas A, Fewtrell MS, Morley R, Lucas PJ, Baker BA, Lister G, et al. Randomized outcome trial of human milk fortification and developmental outcome in preterm infants. Am J Clin Nutr. 1996;64(2):142–51. doi: 10.1093/ajcn/64.2.142 8694013
39. Moltu SJ, Strommen K, Blakstad EW, Almaas AN, Westerberg AC, Braekke K, et al. Enhanced feeding in very-low-birth-weight infants may cause electrolyte disturbances and septicemia—a randomized, controlled trial. Clin Nutr. 2013;32(2):207–12. doi: 10.1016/j.clnu.2012.09.004 23043722
40. Mukhopadhyay K, Narnag A, Mahajan R. Effect of human milk fortification in appropriate for gestation and small for gestation preterm babies: a randomized controlled trial. Indian Pediatr. 2007;44(4):286–90. 17468524
41. Pettifor JM, Rajah R, Venter A, Moodley GP, Opperman L, Cavaleros M, et al. Bone mineralization and mineral homeostasis in very low-birth-weight infants fed either human milk or fortified human milk. J Pediatr Gastroenterol Nutr. 1989;8(2):217–24. doi: 10.1097/00005176-198902000-00016 2709252
42. Tan MJ, Cooke RW. Improving head growth in very preterm infants—a randomised controlled trial I: neonatal outcomes. Arch Dis Child Fetal Neonatal Ed. 2008;93(5):F337–41. doi: 10.1136/adc.2007.124230 18252814
43. Wauben IP, Atkinson SA, Shah JK, Paes B. Growth and body composition of preterm infants: influence of nutrient fortification of mother’s milk in hospital and breastfeeding post-hospital discharge. Acta Paediatr. 1998;87(7):780–5. doi: 10.1080/080352598750013888 9722253
44. Lucas A, Morley R, Cole TJ, Gore SM, Lucas PJ, Crowle P, et al. Early diet in preterm babies and developmental status at 18 months. Lancet. 1990;335(8704):1477–81. doi: 10.1016/0140-6736(90)93026-l 1972430
45. Agosti M, Vegni C, Calciolari G, Marini A, Group GS. Post-discharge nutrition of the very low-birthweight infant: interim results of the multicentric GAMMA study. Acta Paediatr Suppl. 2003;91(441):39–43. doi: 10.1111/j.1651-2227.2003.tb00644.x 14599040
46. Amesz EM, Schaafsma A, Cranendonk A, Lafeber HN. Optimal growth and lower fat mass in preterm infants fed a protein-enriched postdischarge formula. J Pediatr Gastroenterol Nutr. 2010;50(2):200–7. doi: 10.1097/MPG.0b013e3181a8150d 19881394
47. Atkinson SA, Randall-Simpson J, Chang M, Paes B. Randomized trial of feeding nutrient-enriched vs standard formula to premature infants during the first year of life. Pediatr Res. 1999;45:276.
48. Bhatia J, Rassin DK. Feeding the premature infant after hospital discharge: growth and biochemical responses. J Pediatr. 1991;118(4 Pt 1):515–9. doi: 10.1016/s0022-3476(05)83371-2 2007923
49. Brunton JA, Saigal S, Atkinson SA. Growth and body composition in infants with bronchopulmonary dysplasia up to 3 months corrected age: a randomized trial of a high-energy nutrient-enriched formula fed after hospital discharge. J Pediat. 1998;133(3):340–5. doi: 10.1016/s0022-3476(98)70266-5 9738713
50. Carver JD, Wu PY, Hall RT, Ziegler EE, Sosa R, Jacobs J, et al. Growth of preterm infants fed nutrient-enriched or term formula after hospital discharge. Pediatrics. 2001;107(4):683–9. doi: 10.1542/peds.107.4.683 11335744
51. Chan GM, Borschel MW, Jacobs JR. Effects of human milk or formula feeding on the growth, behavior, and protein status of preterm infants discharged from the newborn intensive care unit. Am J Clin Nutr. 1994;60(5):710–6. doi: 10.1093/ajcn/60.5.710 7942577
52. Cooper PA, Rothberg AD. Feeding of very-low-birth-weight infants with special formula—continued use beyond 2000 g and effects on growth to 1 year. S Afr Med J. 1985;67(18):716–8. 3992397
53. De Curtis M, Pieltain C, Rigo J. Body composition in preterm infants fed standard term or enriched formula after hospital discharge. Eur J Nutr. 2002;41(4):177–82. doi: 10.1007/s00394-002-0374-2 12242586
54. Ekcharoen C, Tantibhaedhyangkul R. Comparing Growth Rates after Hospital Discharge of Preterm Infants Fed with Either Post-Discharge Formula or High-Protein, Medium-Chain Triglyceride Containing Formula. J Med Assoc Thai. 2015;98(12):1179–86. 27004302
55. Embleton ND, Cooke RJ. Protein requirements in preterm infants: effect of different levels of protein intake on growth and body composition. Pediatr Res. 2005;58(5):855–60. doi: 10.1203/01.PDR.0000182586.46532.7C 16183813
56. Friel JK, Andrews WL, Matthew JD, McKim E, French S, Long DR. Improved growth of very low birthweight infants. Nutr Res. 1993;13(6):611–20.
57. Jeon GW, Jung YJ, Koh SY, Lee YK, Kim KA, Shin SM, et al. Preterm infants fed nutrient-enriched formula until 6 months show improved growth and development. Pediatr Int. 2011;53(5):683–8. doi: 10.1111/j.1442-200X.2011.03332.x 21342352
58. Koo WW, Hockman EM. Posthospital discharge feeding for preterm infants: effects of standard compared with enriched milk formula on growth, bone mass, and body composition. Am J Clin Nutr. 2006;84(6):1357–64. doi: 10.1093/ajcn/84.6.1357 17158417
59. Litmanovitz I, Eliakim A, Arnon S, Regev R, Bauer S, Shainkin-Kestenbaum R, et al. Enriched post-discharge formula versus term formula for bone strength in very low birth weight infants: a longitudinal pilot study. J Perinat Med. 2007;35(5):431–5. doi: 10.1515/JPM.2007.095 17605597
60. Lucas A, Bishop NJ, King FJ, Cole TJ. Randomised trial of nutrition for preterm infants after discharge. Arch Dis Child. 1992;67(3):324–7. doi: 10.1136/adc.67.3.324 1575558
61. Lucas A, Fewtrell MS, Morley R, Singhal A, Abbott RA, Isaacs E, et al. Randomized trial of nutrient-enriched formula versus standard formula for postdischarge preterm infants. Pediatrics. 2001;108(3):703–11. doi: 10.1542/peds.108.3.703 11533340
62. O’Connor DL, Khan S, Weishuhn K, Vaughan J, Jefferies A, Campbell DM, et al. Growth and nutrient intakes of human milk-fed preterm infants provided with extra energy and nutrients after hospital discharge. Pediatrics. 2008;121(4):766–76. doi: 10.1542/peds.2007-0054 18381542
63. Peng CC, Hsu CH, Kao HA, Hung HY, Chang JH. Feeding with premature or infant formula in premature infants after discharge: comparison of growth and nutrition status. Acta Paediatr Taiwan. 2004;45(3):151–7. 15493734
64. Picaud JC, Decullier E, Plan O, Pidoux O, Bin-Dorel S, van Egroo LD, et al. Growth and bone mineralization in preterm infants fed preterm formula or standard term formula after discharge. J Pediatr. 2008;153(5):616–21, 21 e1–2. doi: 10.1016/j.jpeds.2008.05.042 18657828
65. Roggero P, Gianni ML, Amato O, Liotto N, Morlacchi L, Orsi A, et al. Growth and fat-free mass gain in preterm infants after discharge: a randomized controlled trial. Pediatrics. 2012;130(5):e1215–21. doi: 10.1542/peds.2012-1193 23109680
66. Wheeler RE, Hall RT. Feeding of premature infant formula after hospital discharge of infants weighing less than 1800 grams at birth. J Perinatol. 1996;16(2 Pt 1):111–6. 8732558
67. Zachariassen G, Faerk J, Grytter C, Esberg BH, Hjelmborg J, Mortensen S, et al. Nutrient enrichment of mother’s milk and growth of very preterm infants after hospital discharge. Pediatrics. 2011;127(4):e995–e1003. doi: 10.1542/peds.2010-0723 21402642
68. Yu MX, Zhuang SQ, Gao XY, Tong XM, Yue SJ, Shi LP, et al. Effects of a nutrient-dense formula compared with a post-discharge formula on post-discharge growth of preterm very low birth weight infants with extrauterine growth retardation: a multicentre randomised study in China. J Hum Nutr Diet. 2020. Forthcoming 2020. doi: 10.1111/jhn.12733 31965646
69. Svenningsen NW, Lindroth M, Lindquist B. A comparative study of varying protein intake in low birthweight infant feeding. Acta Paediatr Suppl. 1982;296:28–31.
70. Cooper PA, Rothberg AD, Davies VA. Three year growth and developmental follow up of very low birthweight infants fed own mother’s milk (OMM), a premature infant formula (PF) or one of two standard formulas. Pediatr Res. 1988;23:445A.
71. Bellagamba MP, Carmenati E, D’Ascenzo R, Malatesta M, Spagnoli C, Biagetti C, et al. One extra gram of protein to preterm infants from birth to 1800 g: a single-blinded randomized clinical trial. J Pediatr Gastroenterol Nutr. 2016;62(6):879–84. doi: 10.1097/MPG.0000000000000989 26418211
72. Kerkhof GF, Willemsen RH, Leunissen RW, Breukhoven PE, Hokken-Koelega AC. Health profile of young adults born preterm: negative effects of rapid weight gain in early life. J Clin Endocrinol Metab. 2012;97(12):4498–506. doi: 10.1210/jc.2012-1716 22993033
73. Stutte S, Gohlke B, Peiler A, Schreiner F, Born M, Bartmann P, et al. Impact of early nutrition on body composition in children aged 9.5 years born with extremely low birth weight. Nutrients. 2017;9(2): E124. doi: 10.3390/nu9020124 28208596
74. Ranganathan P, Pramesh CS, Buyse M. Common pitfalls in statistical analysis: Clinical versus statistical significance. Perspect Clin Res. 2015;6(3):169–70. doi: 10.4103/2229-3485.159943 26229754
75. Wood CL, Wood AM, Harker C, Embleton ND. Bone mineral density and osteoporosis after preterm birth: the role of early life factors and nutrition. Int J Endocrinol. 2013;2013:902513. doi: 10.1155/2013/902513 23662104
76. Ahmad I, Nemet D, Eliakim A, Koeppel R, Grochow D, Coussens M, et al. Body composition and its components in preterm and term newborns: A cross-sectional, multimodal investigation. Am J Hum Biol. 2010;22(1):69–75. doi: 10.1002/ajhb.20955 19533616
77. Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):843–7. doi: 10.1007/s00198-003-1454-8 12904837
78. Berry MJ, Jaquiery AL, Oliver MH, Harding JE, Bloomfield FH. Neonatal milk supplementation in lambs has persistent effects on growth and metabolic function that differ by sex and gestational age. Br J Nutr. 2016;116(11):1912–25. doi: 10.1017/S0007114516004013 27974050
79. Morise A, Seve B, Mace K, Magliola C, Le Huerou-Luron I, Louveau I. Growth, body composition and hormonal status of growing pigs exhibiting a normal or small weight at birth and exposed to a neonatal diet enriched in proteins. Br J Nutr. 2011;105(10):1471–9. doi: 10.1017/S0007114510005386 21272407
80. Quigley M, Embleton ND, McGuire W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev. 2018;6:CD002971. doi: 10.1002/14651858.CD002971.pub4 29926476
81. Horta BL, Bahl R, Martines JC, Victora CG, World Health Organization. Evidence on the long-term effects of breastfeeding: systematic reviews and meta-analyses. Geneva, Switzerland: World Health Organization; 2007.
82. Uwaezuoke SN, Eneh CI, Ndu IK. Relationship between exclusive breastfeeding and lower risk of childhood obesity: a narrative review of published evidence. Clin Med Insights Pediatr. 2017;11: 1179556517690196. doi: 10.1177/1179556517690196 28469518
83. Klein CJ. Nutrient requirements for preterm infant formulas. J Nutr. 2002;132(6 Suppl 1):1395S–577S. doi: 10.1093/jn/132.6.1395S 12042465
84. Boyce C, Watson M, Lazidis G, Reeve S, Dods K, Simmer K, et al. Preterm human milk composition: a systematic literature review. Br J Nutr. 2016;116(6):1033–45. doi: 10.1017/S0007114516003007 27522863
85. Brockwell SE, Gordon IR. A comparison of statistical methods for meta-analysis. Stat Med. 2001;20(6):825–40. doi: 10.1002/sim.650 11252006
86. Bender R, Bunce C, Clarke M, Gates S, Lange S, Pace NL, et al. Attention should be given to multiplicity issues in systematic reviews. J Clin Epidemiol. 2008;61(9):857–65. doi: 10.1016/j.jclinepi.2008.03.004 18687287
87. Duchateau L, Pignon JP, Bijnens L, Bertin S, Bourhis J, Sylvester R. Individual patient-versus literature-based meta-analysis of survival data: Time to event and event rate at a particular time can make a difference, an example based on head and neck cancer. Control Clin Trials. 2001;22(5):538–47. doi: 10.1016/s0197-2456(01)00152-0 11578787
88. Lin L, Crowther C, Gamble G, Bloomfield F, Harding JE, Group EI-M. Sex-specific effects of nutritional supplements in infants born early or small: protocol for an individual participant data meta-analysis (ESSENCE IPD-MA). BMJ Open. 2020;10(1):e033438. doi: 10.1136/bmjopen-2019-033438 31919126
Článek vyšel v časopise
PLOS Medicine
2020 Číslo 5
- Antibiotika na nachlazení nezabírají! Jak můžeme zpomalit šíření rezistence?
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- Ibuprofen jako alternativa antibiotik při léčbě infekcí močových cest
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
Nejčtenější v tomto čísle
- National and regional prevalence of posttraumatic stress disorder in sub-Saharan Africa: A systematic review and meta-analysis
- Risk of severe maternal morbidity or death in relation to elevated hemoglobin A1c preconception, and in early pregnancy: A population-based cohort study
- Antibody-based therapies for COVID-19: Can Europe move faster?
- The association of innate and adaptive immunity, subclinical atherosclerosis, and cardiovascular disease in the Rotterdam Study: A prospective cohort study