#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Factors affecting the electrocardiographic QT interval in malaria: A systematic review and meta-analysis of individual patient data


Autoři: Xin Hui S. Chan aff001;  Yan Naung Win aff001;  Ilsa L. Haeusler aff004;  Jireh Y. Tan aff001;  Shanghavie Loganathan aff001;  Sompob Saralamba aff001;  Shu Kiat S. Chan aff001;  Elizabeth A. Ashley aff002;  Karen I. Barnes aff009;  Rita Baiden aff011;  Peter U. Bassi aff012;  Abdoulaye Djimde aff013;  Grant Dorsey aff014;  Stephan Duparc aff015;  Borimas Hanboonkunupakarn aff001;  Feiko O. ter Kuile aff017;  Marcus V. G. Lacerda aff018;  Amit Nasa aff020;  François H. Nosten aff002;  Cyprian O. Onyeji aff022;  Sasithon Pukrittayakamee aff001;  André M. Siqueira aff018;  Joel Tarning aff001;  Walter R. J. Taylor aff001;  Giovanni Valentini aff025;  Michèle van Vugt aff026;  David Wesche aff027;  Nicholas P. J. Day aff001;  Christopher L-H Huang aff028;  Josep Brugada aff029;  Ric N. Price aff001;  Nicholas J. White aff001
Působiště autorů: Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand aff001;  Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom aff002;  Health and Diseases Control Unit, Naypyidaw, Myanmar aff003;  WorldWide Antimalarial Research Network, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom aff004;  University College London Great Ormond Street Institute of Child Health, London, United Kingdom aff005;  Christ Church College, University of Oxford, Oxford, United Kingdom aff006;  Singapore Armed Forces Medical Corps, Singapore aff007;  Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR aff008;  Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa aff009;  WorldWide Antimalarial Resistance Network, Cape Town, South Africa aff010;  INDEPTH Network Secretariat, Accra, Ghana aff011;  Department of Internal Medicine, Faculty of Clinical Sciences, College of Health Sciences, University of Abuja, Abuja, Nigeria aff012;  Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Science Techniques and Technologies of Bamako, Bamako, Mali aff013;  Department of Medicine, University of California San Francisco, San Francisco, California, United States of America aff014;  Medicines for Malaria Venture, Geneva, Switzerland aff015;  Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand aff016;  Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom aff017;  Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil aff018;  Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Fundação Oswaldo Cruz, Manaus, Brazil aff019;  Sun Pharmaceutical Industries Ltd, Gurgaon, Haryana, India aff020;  Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand aff021;  Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria aff022;  The Royal Society of Thailand, Dusit, Bangkok, Thailand aff023;  Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil aff024;  Corporate R&D Department, Alfasigma S.p.A., Rome, Italy aff025;  Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands aff026;  Certara, Princeton, New Jersey, United States of America aff027;  Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom aff028;  Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain aff029;  Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia aff030
Vyšlo v časopise: Factors affecting the electrocardiographic QT interval in malaria: A systematic review and meta-analysis of individual patient data. PLoS Med 17(3): e32767. doi:10.1371/journal.pmed.1003040
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pmed.1003040

Souhrn

Background

Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria.

Methods and findings

We conducted a systematic review and meta-analysis of individual patient data. We searched clinical bibliographic databases (last on August 21, 2017) for studies of the quinoline and structurally related antimalarials for malaria-related indications in human participants in which electrocardiograms were systematically recorded. Unpublished studies were identified by the World Health Organization (WHO) Evidence Review Group (ERG) on the Cardiotoxicity of Antimalarials. Risk of bias was assessed using the Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT) checklist for adverse drug events. Bayesian hierarchical multivariable regression with generalised additive models was used to investigate the effects of malaria and demographic factors on the pretreatment QT interval. The meta-analysis included 10,452 individuals (9,778 malaria patients, including 343 with severe disease, and 674 healthy participants) from 43 studies. 7,170 (68.6%) had fever (body temperature ≥ 37.5°C), and none developed ventricular arrhythmia after antimalarial treatment. Compared to healthy participants, patients with uncomplicated falciparum malaria had shorter QT intervals (−61.77 milliseconds; 95% credible interval [CI]: −80.71 to −42.83) and increased sensitivity of the QT interval to heart rate changes. These effects were greater in severe malaria (−110.89 milliseconds; 95% CI: −140.38 to −81.25). Body temperature was associated independently with clinically significant QT shortening of 2.80 milliseconds (95% CI: −3.17 to −2.42) per 1°C increase. Study limitations include that it was not possible to assess the effect of other factors that may affect the QT interval but are not consistently collected in malaria clinical trials.

Conclusions

Adjustment for malaria and fever-recovery–related QT lengthening is necessary to avoid misattributing malaria-disease–related QT changes to antimalarial drug effects. This would improve risk assessments of antimalarial-related cardiotoxicity in clinical research and practice. Similar adjustments may be indicated for other febrile illnesses for which QT-interval–prolonging medications are important therapeutic options.

Klíčová slova:

Antimalarials – Body temperature – Electrocardiography – Fevers – Heart rate – Malaria – Malarial parasites – Metaanalysis


Zdroje

1. World Health Organization. World Malaria Report 2019. Geneva, Switzerland: 2019.

2. World Health Organization. Guidelines for the Treatment of Malaria. 3rd ed. Geneva, Switzerland. 2015.

3. ICH Harmonised Tripartite Guideline E14. The Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarrhythmic Drugs. Internet. 2005 [cited 2019 Dec 3]. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E14/E14_Guideline.pdf.

4. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350(10):1013–22. doi: 10.1056/NEJMra032426 14999113.

5. World Health Organization. WHO Evidence Review Group on the Cardiotoxicity of Antimalarial Medicines. Geneva, Switzerland: 2017.

6. Chan XHS, Win YN, Mawer LJ, Tan JY, Brugada J, White NJ. Risk of sudden unexplained death after use of dihydroartemisinin-piperaquine for malaria: a systematic review and Bayesian meta-analysis. Lancet Infect Dis. 2018;18(8):913–23. doi: 10.1016/S1473-3099(18)30297-4 29887371; PubMed Central PMCID: PMC6060085.

7. Haeusler IL, Chan XHS, Guerin PJ, White NJ. The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: a systematic review. BMC Med. 2018;16(1):200. doi: 10.1186/s12916-018-1188-2 30400791.

8. White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014;383(9918):723–35. doi: 10.1016/S0140-6736(13)60024-0 23953767.

9. Roggelin L, Pelletier D, Hill JN, Feldt T, Hoffmann S, Ansong D, et al. Disease-associated QT-shortage versus quinine associated QT-prolongation: age dependent ECG-effects in Ghanaian children with severe malaria. Malar J. 2014;13:219. doi: 10.1186/1475-2875-13-219 24902591; PubMed Central PMCID: PMC4067506.

10. von Seidlein L, Jaffar S, Greenwood B. Prolongation of the QTc interval in African children treated for falciparum malaria. Am J Trop Med Hyg. 1997;56(5):494–7. doi: 10.4269/ajtmh.1997.56.494 9180596.

11. Vink AS, Clur SB, Wilde AAM, Blom NA. Effect of age and gender on the QTc-interval in healthy individuals and patients with long-QT syndrome. Trends Cardiovasc Med. 2018;28(1):64–75. doi: 10.1016/j.tcm.2017.07.012 28869094.

12. White NJ. Cardiotoxicity of antimalarial drugs. Lancet Infect Dis. 2007;7(8):549–58. doi: 10.1016/S1473-3099(07)70187-1 17646028.

13. Circle Systems Inc. Stat/Transfer: Data Conversion Software Utility. Seattle, Washington: Circle Systems; 2017.

14. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.

15. Bürkner P-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J StatSoftw. 2017;80(1):1–28. doi: 10.18637/jss.v080.i01

16. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: A probabilistic programming language. J Stati Softw. 2017;76(1). doi: 10.18637/jss.v076.i01.

17. Faillie JL, Ferrer P, Gouverneur A, Driot D, Berkemeyer S, Vidal X, et al. A new risk of bias checklist applicable to randomized trials, observational studies, and systematic reviews was developed and validated to be used for systematic reviews focusing on drug adverse events. J Clin Epidemiol. 2017;86:168–75. doi: 10.1016/j.jclinepi.2017.04.023 28487158.

18. Siqueira AM, Alencar AC, Melo GC, Magalhaes BL, Machado K, Alencar Filho AC, et al. Fixed-Dose Artesunate-Amodiaquine Combination vs Chloroquine for Treatment of Uncomplicated Blood Stage P. vivax Infection in the Brazilian Amazon: An Open-Label Randomized, Controlled Trial. Clin Infect Dis. 2016;64(2):166–174. doi: 10.1093/cid/ciw706 27988484.

19. Valecha N, Savargaonkar D, Srivastava B, Rao BH, Tripathi SK, Gogtay N, et al. Comparison of the safety and efficacy of fixed-dose combination of arterolane maleate and piperaquine phosphate with chloroquine in acute, uncomplicated Plasmodium vivax malaria: a phase III, multicentric, open-label study. Malar J. 2016;15(1):42. doi: 10.1186/s12936-016-1084-1 26818020; PubMed Central PMCID: PMC4728808.

20. Toure OA, Valecha N, Tshefu AK, Thompson R, Krudsood S, Gaye O, et al. A Phase 3, Double-Blind, Randomized Study of Arterolane Maleate-Piperaquine Phosphate vs Artemether-Lumefantrine for Falciparum Malaria in Adolescent and Adult Patients in Asia and Africa. Clin Infect Dis. 2016;62(8):964–971. doi: 10.1093/cid/ciw029 26908796.

21. Sagara I, Beavogui AH, Zongo I, Soulama I, Borghini-Fuhrer I, Fofana B, et al. Safety and efficacy of re-treatments with pyronaridine-artesunate in African patients with malaria: a substudy of the WANECAM randomised trial. Lancet Infect Dis. 2016;16(2):189–98. doi: 10.1016/S1473-3099(15)00318-7 26601738; PubMed Central PMCID: PMC4726763.

22. Kredo T, Mauff K, Workman L, Van der Walt JS, Wiesner L, Smith PJ, et al. The interaction between artemether-lumefantrine and lopinavir/ritonavir-based antiretroviral therapy in HIV-1 infected patients. BMC Infect Dis. 2016;16:30. doi: 10.1186/s12879-016-1345-1 26818566; PubMed Central PMCID: PMC4728832.

23. Kakuru A, Jagannathan P, Muhindo MK, Natureeba P, Awori P, Nakalembe M, et al. Dihydroartemisinin-Piperaquine for the Prevention of Malaria in Pregnancy. N Engl J Med. 2016;374(10):928–39. doi: 10.1056/NEJMoa1509150 26962728; PubMed Central PMCID: PMC4847718.

24. Toure OA, Rulisa S, Anvikar AR, Rao BS, Mishra P, Jalali RK, et al. Efficacy and safety of fixed dose combination of arterolane maleate and piperaquine phosphate dispersible tablets in paediatric patients with acute uncomplicated Plasmodium falciparum malaria: a phase II, multicentric, open-label study. Malar J. 2015;14(1):469. doi: 10.1186/s12936-015-0982-y 26608469.

25. Darpo B, Ferber G, Siegl P, Laurijssens B, Macintyre F, Toovey S, et al. Evaluation of the QT effect of a combination of piperaquine and a novel anti-malarial drug candidate OZ439, for the treatment of uncomplicated malaria. Br J Clin Pharmacol. 2015;80(4):706–15. doi: 10.1111/bcp.12680 25966781; PubMed Central PMCID: PMC4594707.

26. Baiden R, Oduro A, Halidou T, Gyapong M, Sie A, Macete E, et al. Prospective observational study to evaluate the clinical safety of the fixed-dose artemisinin-based combination Eurartesim(R) (dihydroartemisinin/piperaquine), in public health facilities in Burkina Faso, Mozambique, Ghana, and Tanzania. Malar J. 2015;14:160. doi: 10.1186/s12936-015-0664-9 25885858; PubMed Central PMCID: PMC4405867.

27. Pukrittayakamee S, Tarning J, Jittamala P, Charunwatthana P, Lawpoolsri S, Lee SJ, et al. Pharmacokinetic interactions between primaquine and chloroquine. Antimicrob Agents Chemother. 2014;58(6):3354–9. doi: 10.1128/AAC.02794-13 24687509; PubMed Central PMCID: PMC4068454.

28. Ogutu B, Juma E, Obonyo C, Jullien V, Carn G, Vaillant M, et al. Fixed dose artesunate amodiaquine—a phase IIb, randomized comparative trial with non-fixed artesunate amodiaquine. Malar J. 2014;13:498. doi: 10.1186/1475-2875-13-498 25515698; PubMed Central PMCID: PMC4302156.

29. Hanboonkunupakarn B, Ashley EA, Jittamala P, Tarning J, Pukrittayakamee S, Hanpithakpong W, et al. Open-label crossover study of primaquine and dihydroartemisinin-piperaquine pharmacokinetics in healthy adult thai subjects. Antimicrob Agents Chemother. 2014;58(12):7340–6. doi: 10.1128/AAC.03704-14 25267661; PubMed Central PMCID: PMC4249579.

30. Valecha N, Krudsood S, Tangpukdee N, Mohanty S, Sharma SK, Tyagi PK, et al. Arterolane maleate plus piperaquine phosphate for treatment of uncomplicated Plasmodium falciparum malaria: a comparative, multicenter, randomized clinical trial. Clin Infect Dis. 2012;55(5):663–71. doi: 10.1093/cid/cis475 22586253.

31. Ndiaye JL, Faye B, Gueye A, Tine R, Ndiaye D, Tchania C, et al. Repeated treatment of recurrent uncomplicated Plasmodium falciparum malaria in Senegal with fixed-dose artesunate plus amodiaquine versus fixed-dose artemether plus lumefantrine: a randomized, open-label trial. Malar J. 2011;10:237. doi: 10.1186/1475-2875-10-237 21838909; PubMed Central PMCID: PMC3171378.

32. Kredo T, Mauff K, Van der Walt JS, Wiesner L, Maartens G, Cohen K, et al. Interaction between artemether-lumefantrine and nevirapine-based antiretroviral therapy in HIV-1-infected patients. Antimicrob Agents Chemother. 2011;55(12):5616–23. doi: 10.1128/AAC.05265-11 21947399; PubMed Central PMCID: PMC3232823.

33. Valecha N, Phyo AP, Mayxay M, Newton PN, Krudsood S, Keomany S, et al. An open-label, randomised study of dihydroartemisinin-piperaquine versus artesunate-mefloquine for falciparum malaria in Asia. PLoS ONE. 2010;5(7):e11880. doi: 10.1371/journal.pone.0011880 20689583; PubMed Central PMCID: PMC2912766.

34. Krudsood S, Looareesuwan S, Tangpukdee N, Wilairatana P, Phumratanaprapin W, Leowattana W, et al. New fixed-dose artesunate-mefloquine formulation against multidrug-resistant Plasmodium falciparum in adults: a comparative phase IIb safety and pharmacokinetic study with standard-dose nonfixed artesunate plus mefloquine. Antimicrob Agents Chemother. 2010;54(9):3730–7. doi: 10.1128/AAC.01187-09 20547795; PubMed Central PMCID: PMC2935027.

35. Navaratnam V, Ramanathan S, Wahab MS, Siew Hua G, Mansor SM, Kiechel JR, et al. Tolerability and pharmacokinetics of non-fixed and fixed combinations of artesunate and amodiaquine in Malaysian healthy normal volunteers. Eur J Clin Pharmacol. 2009;65(8):809–21. doi: 10.1007/s00228-009-0656-1 19404632; PubMed Central PMCID: PMC2714898.

36. Bassat Q, Mulenga M, Tinto H, Piola P, Borrmann S, Menendez C, et al. Dihydroartemisinin-piperaquine and artemether-lumefantrine for treating uncomplicated malaria in African children: a randomised, non-inferiority trial. PLoS ONE. 2009;4(11):e7871. doi: 10.1371/journal.pone.0007871 19936217; PubMed Central PMCID: PMC2776302.

37. Mytton OT, Ashley EA, Peto L, Price RN, La Y, Hae R, et al. Electrocardiographic safety evaluation of dihydroartemisinin piperaquine in the treatment of uncomplicated falciparum malaria. Am J Trop Med Hyg. 2007;77(3):447–50. 17827358.

38. Bassi PU, Onyeji CO, Ukponmwan OE. Effects of tetracycline on the pharmacokinetics of halofantrine in healthy volunteers. Br J Clin Pharmacol. 2004;58(1):52–5. doi: 10.1111/j.1365-2125.2004.02087.x 15206992; PubMed Central PMCID: PMC1884545.

39. Abernethy DR, Wesche DL, Barbey JT, Ohrt C, Mohanty S, Pezzullo JC, et al. Stereoselective halofantrine disposition and effect: concentration-related QTc prolongation. Br J Clin Pharmacol. 2001;51(3):231–7. doi: 10.1046/j.1365-2125.2001.00351.x 11298069; PubMed Central PMCID: PMC2015022.

40. van Vugt M, Looareesuwan S, Wilairatana P, McGready R, Villegas L, Gathmann I, et al. Artemether-lumefantrine for the treatment of multidrug-resistant falciparum malaria. Trans R Soc Trop Med Hyg. 2000;94(5):545–8. doi: 10.1016/s0035-9203(00)90082-8 11132386.

41. van Vugt M, Wilairatana P, Gemperli B, Gathmann I, Phaipun L, Brockman A, et al. Efficacy of six doses of artemether-lumefantrine (benflumetol) in multidrug-resistant Plasmodium falciparum malaria. Am J Trop Med Hyg. 1999;60(6):936–42. doi: 10.4269/ajtmh.1999.60.936 10403324.

42. Tran TH, Day NP, Nguyen HP, Nguyen TH, Tran TH, Pham PL, et al. A controlled trial of artemether or quinine in Vietnamese adults with severe falciparum malaria. N Engl J Med. 1996;335(2):76–83. doi: 10.1056/NEJM199607113350202 8649493.

43. Price RN, Nosten F, Luxemburger C, Kham A, Brockman A, Chongsuphajaisiddhi T, et al. Artesunate versus artemether in combination with mefloquine for the treatment of multidrug-resistant falciparum malaria. Trans R Soc Trop Med Hyg. 1995;89(5):523–7. doi: 10.1016/0035-9203(95)90094-2 8560531.

44. Nosten F, ter Kuile FO, Luxemburger C, Woodrow C, Kyle DE, Chongsuphajaisiddhi T, et al. Cardiac effects of antimalarial treatment with halofantrine. Lancet. 1993;341(8852):1054–6. doi: 10.1016/0140-6736(93)92412-m 8096959.

45. White NJ, Miller KD, Churchill FC, Berry C, Brown J, Williams SB, et al. Chloroquine treatment of severe malaria in children. Pharmacokinetics, toxicity, and new dosage recommendations. N Engl J Med. 1988;319(23):1493–500. doi: 10.1056/NEJM198812083192301 3054558.

46. Hanboonkunupakarn B, van der Pluijm RW, Hoglund R, Pukrittayakamee S, Winterberg M, Mukaka M, et al. Sequential Open-Label Study of the Safety, Tolerability, and Pharmacokinetic Interactions between Dihydroartemisinin-Piperaquine and Mefloquine in Healthy Thai Adults. Antimicrob Agents Chemother. 2019;63(8):e00060–19. doi: 10.1128/AAC.00060-19 31182525; PubMed Central PMCID: PMC6658739.

47. Ahmed R, Poespoprodjo JR, Syafruddin D, Khairallah C, Pace C, Lukito T, et al. Efficacy and safety of intermittent preventive treatment and intermittent screening and treatment versus single screening and treatment with dihydroartemisinin-piperaquine for the control of malaria in pregnancy in Indonesia: a cluster-randomised, open-label, superiority trial. Lancet Infect Dis. 2019;19(9):973–87. doi: 10.1016/S1473-3099(19)30156-2 31353217; PubMed Central PMCID: PMC6715823.

48. Funck-Brentano C, Bacchieri A, Valentini G, Pace S, Tommasini S, Voiriot P, et al. Effects of Dihydroartemisinin-Piperaquine Phosphate and Artemether-Lumefantrine on QTc Interval Prolongation. Sci Rep. 2019;9(1):777. doi: 10.1038/s41598-018-37112-6 30692558.

49. Macintyre F, Adoke Y, Tiono AB, Duong TT, Mombo-Ngoma G, Bouyou-Akotet M, et al. A randomised, double-blind clinical phase II trial of the efficacy, safety, tolerability and pharmacokinetics of a single dose combination treatment with artefenomel and piperaquine in adults and children with uncomplicated Plasmodium falciparum malaria. BMC Med. 2017;15(1):181. doi: 10.1186/s12916-017-0940-3 28988541; PubMed Central PMCID: PMC5632828.

50. Natureeba P, Kakuru A, Muhindo M, Littmann E, Ochieng T, Ategeka J, et al. Intermittent Preventive Treatment with Dihydroartemisinin-piperaquine for the Prevention of Malaria among HIV-infected Pregnant Women. J Infect Dis. 2017;216(1):29–35. doi: 10.1093/infdis/jix110 28329368.

51. European Medicines Agency. Eurartesim 160/20mg Tablets: Summary of Product Characteristics. Internet. 2011 [cited 2019 Dec 3]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001199/WC500118113.pdf.

52. Farrington L, Vance H, Rek J, Prahl M, Jagannathan P, Katureebe A, et al. Both inflammatory and regulatory cytokine responses to malaria are blunted with increasing age in highly exposed children. Malar J. 2017;16(1):499. doi: 10.1186/s12936-017-2148-6 29284469; PubMed Central PMCID: PMC5747142.

53. Oyegue-Liabagui SL, Bouopda-Tuedom AG, Kouna LC, Maghendji-Nzondo S, Nzoughe H, Tchitoula-Makaya N, et al. Pro- and anti-inflammatory cytokines in children with malaria in Franceville, Gabon. Am J Clin Exp Immunol. 2017;6(2):9–20. 28337387; PubMed Central PMCID: PMC5344990.

54. Lazzerini PE, Laghi-Pasini F, Bertolozzi I, Morozzi G, Lorenzini S, Simpatico A, et al. Systemic inflammation as a novel QT-prolonging risk factor in patients with torsades de pointes. Heart. 2017;103(22):1821–9. doi: 10.1136/heartjnl-2016-311079 28490617.

55. Aromolaran AS, Srivastava U, Ali A, Chahine M, Lazaro D, El-Sherif N, et al. Interleukin-6 inhibition of hERG underlies risk for acquired long QT in cardiac and systemic inflammation. PLoS ONE. 2018;13(12):e0208321. doi: 10.1371/journal.pone.0208321 30521586; PubMed Central PMCID: PMC6283635.

56. Bethell DB, Phuong PT, Phuong CX, Nosten F, Waller D, Davis TM, et al. Electrocardiographic monitoring in severe falciparum malaria. Trans R Soc Trop Med Hyg. 1996;90(3):266–9. doi: 10.1016/s0035-9203(96)90241-2 8758072.

57. World Health Organization. Severe Malaria. Trop Med Int Health. 2014;19 Suppl 1:7–131. doi: 10.1111/tmi.12313_2 25214480.

58. Karjalainen J, Viitasalo M. Fever and cardiac rhythm. Arch Intern Med. 1986;146(6):1169–71. 2424378.

59. Drew D, Baranchuk A, Hopman W, Brison RJ. The impact of fever on corrected QT interval. J Electrocardiol. 2017;50(5):570–5. doi: 10.1016/j.jelectrocard.2017.04.006 28465023

60. Lee W, Windley MJ, Vandenberg JI, Hill AP. In Vitro and In Silico Risk Assessment in Acquired Long QT Syndrome: The Devil Is in the Details. Front Physiol. 2017;8:934. doi: 10.3389/fphys.2017.00934 29201009; PubMed Central PMCID: PMC5696636.

61. Webster G, Berul CI. An update on channelopathies: from mechanisms to management. Circulation. 2013;127(1):126–40. doi: 10.1161/CIRCULATIONAHA.111.060343 23283857.

62. Amin AS, Herfst LJ, Delisle BP, Klemens CA, Rook MB, Bezzina CR, et al. Fever-induced QTc prolongation and ventricular arrhythmias in individuals with type 2 congenital long QT syndrome. J Clin Invest. 2008;118(7):2552–61. doi: 10.1172/JCI35337 18551196; PubMed Central PMCID: PMC2423868.

63. Sauer AJ, Newton-Cheh C. Clinical and genetic determinants of torsade de pointes risk. Circulation. 2012;125(13):1684–94. doi: 10.1161/CIRCULATIONAHA.111.080887 22474311; PubMed Central PMCID: PMC3347483.

64. Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death. Circulation. 2012;125(4):620–37. doi: 10.1161/CIRCULATIONAHA.111.023838 22294707; PubMed Central PMCID: PMC3399522.

65. Bazett HC. An Analysis of the Time Relations of Electrocardiograms. Heart. 1920;7:353–70.

66. Fridericia LS. The duration of systole in the electrocardiogram of normal subjects and of patients with heart disease. Acta Med Scand. 1920;53:489–506.

67. Rautaharju PM, Zhang ZM. Linearly scaled, rate-invariant normal limits for QT interval: eight decades of incorrect application of power functions. J Cardiovasc Electrophysiol. 2002;13(12):1211–8. doi: 10.1046/j.1540-8167.2002.01211.x 12521335.

68. Rabkin SW, Szefer E, Thompson DJS. A New QT Interval Correction Formulae to Adjust for Increases in Heart Rate. JACC Clin Electrophysiol. 2017;3(7):756–66. doi: 10.1016/j.jacep.2016.12.005 29759542.


Článek vyšel v časopise

PLOS Medicine


2020 Číslo 3
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#