Comparison of aggregate and individual participant data approaches to meta-analysis of randomised trials: An observational study
Autoři:
Jayne F. Tierney aff001; David J. Fisher aff001; Sarah Burdett aff001; Lesley A. Stewart aff002; Mahesh K. B. Parmar aff001
Působiště autorů:
MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom
aff001; Centre for Reviews and Dissemination, University of York, York, United Kingdom
aff002
Vyšlo v časopise:
Comparison of aggregate and individual participant data approaches to meta-analysis of randomised trials: An observational study. PLoS Med 17(1): e32767. doi:10.1371/journal.pmed.1003019
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pmed.1003019
Souhrn
Background
It remains unclear when standard systematic reviews and meta-analyses that rely on published aggregate data (AD) can provide robust clinical conclusions. We aimed to compare the results from a large cohort of systematic reviews and meta-analyses based on individual participant data (IPD) with meta-analyses of published AD, to establish when the latter are most likely to be reliable and when the IPD approach might be required.
Methods and findings
We used 18 cancer systematic reviews that included IPD meta-analyses: all of those completed and published by the Meta-analysis Group of the MRC Clinical Trials Unit from 1991 to 2010. We extracted or estimated hazard ratios (HRs) and standard errors (SEs) for survival from trial reports and compared these with IPD equivalents at both the trial and meta-analysis level. We also extracted or estimated the number of events. We used paired t tests to assess whether HRs and SEs from published AD differed on average from those from IPD. We assessed agreement, and whether this was associated with trial or meta-analysis characteristics, using the approach of Bland and Altman. The 18 systematic reviews comprised 238 unique trials or trial comparisons, including 37,082 participants. A HR and SE could be generated for 127 trials, representing 53% of the trials and approximately 79% of eligible participants. On average, trial HRs derived from published AD were slightly more in favour of the research interventions than those from IPD (HRAD to HRIPD ratio = 0.95, p = 0.007), but the limits of agreement show that for individual trials, the HRs could deviate substantially. These limits narrowed with an increasing number of participants (p < 0.001) or a greater number (p < 0.001) or proportion (p < 0.001) of events in the AD. On average, meta-analysis HRs from published AD slightly tended to favour the research interventions whether based on fixed-effect (HRAD to HRIPD ratio = 0.97, p = 0.088) or random-effects (HRAD to HRIPD ratio = 0.96, p = 0.044) models, but the limits of agreement show that for individual meta-analyses, agreement was much more variable. These limits tended to narrow with an increasing number (p = 0.077) or proportion of events (p = 0.11) in the AD. However, even when the information size of the AD was large, individual meta-analysis HRs could still differ from their IPD equivalents by a relative 10% in favour of the research intervention to 5% in favour of control. We utilised the results to construct a decision tree for assessing whether an AD meta-analysis includes sufficient information, and when estimates of effects are most likely to be reliable. A lack of power at the meta-analysis level may have prevented us identifying additional factors associated with the reliability of AD meta-analyses, and we cannot be sure that our results are generalisable to all outcomes and effect measures.
Conclusions
In this study we found that HRs from published AD were most likely to agree with those from IPD when the information size was large. Based on these findings, we provide guidance for determining systematically when standard AD meta-analysis will likely generate robust clinical conclusions, and when the IPD approach will add considerable value.
Klíčová slova:
Clinical trials (cancer treatment) – Decision trees – Metaanalysis – Non-small cell lung cancer – Ovarian cancer – Ovaries – Research validity – Systematic reviews
Zdroje
1. Page MJ, Shamseer L, Altman DG, Tetzlaff J, Sampson M, Tricco AC, et al. Epidemiology and reporting characteristics of systematic reviews of biomedical research: a cross-sectional study. PLoS Med. 2016;13(5):e1002028. doi: 10.1371/journal.pmed.1002028 27218655
2. Baudard M, Yavchitz A, Ravaud P, Perrodeau E, Boutron I. Impact of searching clinical trial registries in systematic reviews of pharmaceutical treatments: methodological systematic review and reanalysis of meta-analyses. BMJ. 2017;356:j448. doi: 10.1136/bmj.j448 28213479
3. Sterne JAC, Egger M, Moher D, Cochrane Bias Methods Group. Addressing reporting biases. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions. Chichester (UK): John Wiley & Sons; 2008. pp. 297–333.
4. Parmar MKB, Torri V, Stewart LA. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17:2815–34. doi: 10.1002/(sici)1097-0258(19981230)17:24<2815::aid-sim110>3.0.co;2-8 9921604
5. Williamson PR, Tudur Smith C, Hutton JL, Marson AG. Aggregate data meta-analysis with time-to-event outcomes. Stat Med. 2002;21:3337–51. doi: 10.1002/sim.1303 12407676
6. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8(1):16.
7. Stewart LA, Clarke MJ, Cochrane Working Party Group on Meta-analysis using Individual Patient Data. Practical methodology of meta-analyses (overviews) using updated individual patient data. Stat Med. 1995;14:2057–79. doi: 10.1002/sim.4780141902 8552887
8. Stewart LA, Tierney JF. To IPD or not to IPD? Advantages and disadvantages of systematic reviews using individual patient data. Eval Health Prof. 2002;25(1):76–97. doi: 10.1177/0163278702025001006 11868447
9. Stewart LA, Tierney JF, Clarke M, Cochrane Individual Patient Data Meta-analysis Methods Group. Reviews of individual patient data. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions. Chichester (UK): John Wiley & Sons; 2008. pp. 547–58.
10. Tierney JF, Vale CL, Riley R, Tudur Smith C, Stewart LA, Clarke M, et al. Individual participant data (IPD) meta-analyses of randomised controlled trials: guidance on their use. PLoS Med. 2015;12(7):e1001855. doi: 10.1371/journal.pmed.1001855 26196287
11. Fisher DJ, Carpenter JR, Morris TP, Freeman SC, Tierney JF. Meta-analytical methods to identify who benefits most from treatments: daft, deluded, or deft approach? BMJ. 2017;356:j573. doi: 10.1136/bmj.j573 28258124
12. Tudur Smith C, Clarke M, Marson T, Riley R, Stewart L, Tierney J, et al. A framework for deciding if individual participant data are likely to be worthwhile. Abstracts of the 23rd Cochrane Colloquium, Vienna, Austria, 3–7 October 2015. Cochrane Database Syst Rev. 2015;10(Suppl):RO 6.1.
13. Tudur Smith C, Marcucci M, Nolan SJ, Iorio A, Sudell M, Riley R, et al. Individual participant data meta-analyses compared with meta-analyses based on aggregate data. Cochrane Database Syst Rev. 2016;9:MR000007. doi: 10.1002/14651858.MR000007.pub3 27595791
14. Stewart LA, Parmar MKB. Meta-analysis of the literature or of individual patient data: is there a difference? Lancet. 1993;341:418–22. doi: 10.1016/0140-6736(93)93004-k 8094183
15. Pignon J-P, Arriagada R. Meta-analysis. Lancet. 1993;341(8850):964–5.
16. Clarke M, Godwin J. Systematic reviews using individual patient data: a map for the minefields? Ann Oncol. 1998;9:827–33. doi: 10.1023/a:1008468705492 9789604
17. Ioannidis JP, Collier AC, Cooper DA, Corey L, Fiddian AP, Gazzard BG, et al. Clinical efficacy of high-dose acyclovir in patients with human immunodeficiency virus infection: a meta-analysis of randomized individual patient data. J Infect Dis. 1998;178(2):349–59. doi: 10.1086/515621 9697714
18. Szczech LA, Berlin JA, Feldman HI. The effect of antilymphocyte induction therapy on renal allograft survival. A meta-analysis of individual patient-level data. Anti-Lymphocyte Antibody Induction Therapy Study Group. Ann Intern Med. 1998;128(10):817–26. doi: 10.7326/0003-4819-128-10-199805150-00004 9599193
19. Best L, Simmons P, Baughan C, Buchanan R, Davis C, Fentiman I, et al. Palliative chemotherapy for advanced or metastatic colorectal cancer. Cochrane Database Syst Rev. 2000;2000:CD001545.
20. Williamson PR, Marson AG, Tudur C, Hutton JL, Chadwick D. Individual patient data meta-analysis of randomized anti-epileptic drug monotherapy trials. J Eval Clin Pract. 2000;6(2):205–14. doi: 10.1046/j.1365-2753.2000.00236.x 10970014
21. Duchateau L, Pignon J-P, Bijnens L, Bertin S, Bourhis J, Sylvester R. Individual patient-versus literature-based meta-analysis of survival data: time to event and event rate at a particular time can make a difference, an example based on head and neck cancer. Control Clin Trials. 2001;22(5):538–47. doi: 10.1016/s0197-2456(01)00152-0 11578787
22. Brouwer IA, Raitt MH, Dullemeijer C, Kraemer DF, Zock PL, Morris C, et al. Effect of fish oil on ventricular tachyarrhythmia in three studies in patients with implantable cardioverter defibrillators. Eur Heart J. 2009;30(7):820–6. doi: 10.1093/eurheartj/ehp003 19196720
23. Rejnmark L, Avenell A, Masud T, Anderson F, Meyer HE, Sanders KM, et al. Vitamin D with calcium reduces mortality: patient level pooled analysis of 70,528 patients from eight major vitamin D trials. J Clin Endocrinol Metab. 2012;97(8):2670–81. doi: 10.1210/jc.2011-3328 22605432
24. Bria E, Gralla RJ, Raftopoulos H, Sperduti I, Millela M, Cognetti F, et al. Assessing two meta-analysis (MA) methods: individual patient data-based (IPD) versus literature-based abstracted data (AD) in 10 MA including 37,002 patients (pts)—are there differences of concern? J Clin Oncol. 2011;29(15 Suppl):Abstract 6054.
25. Advanced Bladder Cancer (ABC) Meta-analysis Collaboration. Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data. Eur Urol. 2005;48(2):202–6. doi: 10.1016/j.eururo.2005.04.006 15939524
26. Advanced Bladder Cancer (ABC) Meta-analysis Collaboration. Adjuvant chemotherapy in invasive bladder cancer: a systematic review and meta-analysis of individual patient data. Eur Urol. 2005;48(2):189–201. doi: 10.1016/j.eururo.2005.04.005 15939530
27. Advanced Ovarian Cancer Trialists Group. Chemotherapy in advanced ovarian cancer: an overview of randomised clinical trials. BMJ. 1991;303:884–93. doi: 10.1136/bmj.303.6807.884 1834291
28. Aabo K, Adams M, Adnitt P, Alberts DS, Athanazziou A, et al. Chemotherapy in advanced ovarian cancer: four systematic meta-analyses of individual patient data from 37 randomized trials. Advanced Ovarian Cancer Trialists’ Group. Br J Cancer. 1998;78(11):1479–87. doi: 10.1038/bjc.1998.710 9836481
29. Arnott SJ, Duncan W, Gignoux M, David GJ, Hansen HS, Launois B, et al. Preoperative radiotherapy in esophageal carcinoma: a meta-analysis using individual patient data (Oesophageal Cancer Collaborative Group). Int J Radiat Oncol Biol Phys. 1998;41(3):579–83. doi: 10.1016/s0360-3016(97)00569-5 9635705
30. Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration. Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol. 2008;26(35):5802–12. doi: 10.1200/JCO.2008.16.4368 19001332
31. Glioma Meta-analysis Trialists (GMT) Group. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet. 2002;359(9311):1011–18. doi: 10.1016/s0140-6736(02)08091-1 11937180
32. Neoadjuvant Chemotherapy for Cervix Cancer Meta-analysis Collaboration. Neoadjuvant chemotherapy for locally advanced cervical cancer: a systematic review and meta-analysis of individual patient data from 21 randomised trials. Eur J Cancer. 2003;39(17):2470–86. doi: 10.1016/s0959-8049(03)00425-8 14602133
33. Non-small Cell Lung Cancer Collaborative Group. Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials. BMJ. 1995;311:899–909. 7580546
34. NSCLC Meta-Analyses Collaborative Group. Chemotherapy in addition to supportive care improves survival in advanced non-small-cell lung cancer: a systematic review and meta-analysis of individual patient data from 16 randomized controlled trials. J Clin Oncol. 2008;26(28):4617–25. doi: 10.1200/JCO.2008.17.7162 18678835
35. PORT Meta-analysis Trialists Group. Postoperative radiotherapy in non-small-cell lung cancer: systematic review and meta-analysis of individual patient data from nine randomised controlled trials. Lancet. 1998;352:257–63. 9690404
36. Sarcoma Meta-analysis Collaboration. Adjuvant chemotherapy for localised resectable soft-tissue sarcoma of adults: meta-analysis of individual patient data. Lancet. 1997;350:1647–54. 9400508
37. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88. doi: 10.1016/0197-2456(86)90046-2 3802833
38. Röver C, Knapp G, Friede T. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies. BMC Med Res Methodol. 2015;15:99. doi: 10.1186/s12874-015-0091-1 26573817
39. Hardy RJ, Thompson SG. A likelihood approach to meta-analysis with random effects. Stat Med. 1996;15(6):619–29. doi: 10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A 8731004
40. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60. doi: 10.1177/096228029900800204 10501650
41. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10. 2868172
42. Bland JM, Altman DG. Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet. 1995;346(8982):1085–7. doi: 10.1016/s0140-6736(95)91748-9 7564793
43. Higgins JPT, Altman DG, Sterne JAC. Assessing risk of bias in included studies. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions. Version 5.1.0. London: Cochrane Collaboration; 2011.
44. Vale CL, Tierney JF, Burdett S. Can trial quality be reliably assessed from published reports of cancer trials: evaluation of risk of bias assessments in systematic reviews. BMJ. 2013;346:f1798. doi: 10.1136/bmj.f1798 23610376
45. Michiels S, Piedbois P, Burdett S, Syz N, Stewart L, Pignon JP. Meta-analysis when only the median survival times are known: a comparison with individual patient data results. Int J Technol Assess Health Care. 2005;21(1):119–25. doi: 10.1017/s0266462305050154 15736523
46. Pogue JM, Yusuf S. Cumulating evidence from randomized trials: utilizing sequential monitoring boundaries for cumulative meta-analysis. Control Clin Trials. 1997;18(6):580–93. doi: 10.1016/s0197-2456(97)00051-2 9408720
47. Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol. 2008;61(1):64–75. doi: 10.1016/j.jclinepi.2007.03.013 18083463
48. Vale CL, Burdett S, Rydzewska LH, Albiges L, Clarke NW, Fisher D, et al. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data. Lancet Oncol. 2016;17(2):243–56. doi: 10.1016/S1470-2045(15)00489-1 26718929
49. Tierney JF, Vale CL, Burdett S, Fisher D, Rydzewska LHM, Parmar MKB. Timely and reliable evaluation of the effects of interventions: a framework for adaptive meta-analysis (FAME). Trials. 2017;18(Suppl 1):P351.
50. Rydzewska LHM, Burdett S, Vale CL, Clarke NW, Fizazi K, Kheoh T, et al. Adding abiraterone to androgen deprivation therapy in men with metastatic hormone-sensitive prostate cancer: a systematic review and meta-analysis. Eur J Cancer. 2017;84:88–101. doi: 10.1016/j.ejca.2017.07.003 28800492
51. Burdett S, Boeve LM, Ingleby FC, Fisher DJ, Rydzewska LH, Vale CL, et al. Prostate radiotherapy for metastatic hormone-sensitive prostate cancer: a STOPCAP systematic review and meta-analysis. Eur Urol. 2019;76(1):115–24. doi: 10.1016/j.eururo.2019.02.003 30826218
52. Roberts I, Ker K, Edwards P, Beecher D, Manno D, Sydenham E. The knowledge system underpinning healthcare is not fit for purpose and must change. BMJ. 2015;350:h2463. doi: 10.1136/bmj.h2463 26041754
53. Smith CT, Oyee J, Marcucci M, Rovers M, Iorio A, Riley R, et al. Individual participant data meta-analyses compared with meta-analyses based on aggregate data. Trials. 2011;12(Suppl 1):A57.
54. Hirooka T, Hamada C, Yoshimura I. A note on estimating treatment effect for time-to-event data in a literature-based meta-analysis. Methods Inf Med. 2009;48(2):104–12. doi: 10.3414/ME0535 19283306
55. Guyot P, Ades AE, Ouwens MJ, Welton NJ. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves. BMC Med Res Methodol. 2012;12:9. doi: 10.1186/1471-2288-12-9 22297116
56. Wei Y, Royston P, Tierney JF, Parmar MK. Meta-analysis of time-to-event outcomes from randomized trials using restricted mean survival time: application to individual participant data. Stat Med. 2015;34(21):2881–98. doi: 10.1002/sim.6556 26099573
57. Wei Y, Royston P, Tierney J, Parmar M. The feasibility and reliability of using restricted mean survival time in aggregate data meta-analysis of time-to-event outcomes. Abstracts of the 21st Cochrane Colloquium, Québec City, Canada. Cochrane Database Syst Rev. 2013;(9 Suppl):P3.044.
58. Kirkham JJ, Dwan KM, Altman DG, Gamble C, Dodd S, Smyth R, et al. The impact of outcome reporting bias in randomised controlled trials on a cohort of systematic reviews. BMJ. 2010;340:c365. doi: 10.1136/bmj.c365 20156912
59. Altman DG. Better reporting of randomised controlled trials: the CONSORT statement. BMJ. 1996;313:570–1. doi: 10.1136/bmj.313.7057.570 8806240
60. Moher D, Schulz KF, Altman D, CONSORT Group. The CONSORT Statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA. 2001;285:1987–91. doi: 10.1001/jama.285.15.1987 11308435
Článek vyšel v časopise
PLOS Medicine
2020 Číslo 1
- Distribuce a lokalizace speciálně upravených exosomů může zefektivnit léčbu svalových dystrofií
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Berberin: přírodní hypolipidemikum se slibnými výsledky
- „Pekelný kamínek“ s léčivými účinky: Jak se dusičnan stříbrný používá dnes?
Nejčtenější v tomto čísle
- Association of puberty timing with type 2 diabetes: A systematic review and meta-analysis
- Advances in cervical cancer prevention: Efficacy, effectiveness, elimination?
- Effectiveness of a scalable group-based education and monitoring program, delivered by health workers, to improve control of hypertension in rural India: A cluster randomised controlled trial
- Infectious disease pandemic planning and response: Incorporating decision analysis