#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation


Autoři: Gregory R. Keele aff001;  Bryan C. Quach aff001;  Jennifer W. Israel aff002;  Grace A. Chappell aff005;  Lauren Lewis aff005;  Alexias Safi aff006;  Jeremy M. Simon aff002;  Paul Cotney aff002;  Gregory E. Crawford aff006;  William Valdar aff002;  Ivan Rusyn aff005;  Terrence S. Furey aff002
Působiště autorů: Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America aff001;  Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America aff002;  The Jackson Laboratory, Bar Harbor, Maine, United States of America aff003;  Center for Omics Discovery and Epidemiology, Research Triangle Institute (RTI) International, Research Triangle Park, North Carolina, United States of America aff004;  Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America aff005;  Department of Pediatrics, Duke University, Durham, North Carolina, United States of America aff006;  Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America aff007;  Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America aff008;  Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America aff009
Vyšlo v časopise: Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation. PLoS Genet 16(1): e32767. doi:10.1371/journal.pgen.1008537
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008537

Souhrn

Gene transcription profiles across tissues are largely defined by the activity of regulatory elements, most of which correspond to regions of accessible chromatin. Regulatory element activity is in turn modulated by genetic variation, resulting in variable transcription rates across individuals. The interplay of these factors, however, is poorly understood. Here we characterize expression and chromatin state dynamics across three tissues—liver, lung, and kidney—in 47 strains of the Collaborative Cross (CC) mouse population, examining the regulation of these dynamics by expression quantitative trait loci (eQTL) and chromatin QTL (cQTL). QTL whose allelic effects were consistent across tissues were detected for 1,101 genes and 133 chromatin regions. Also detected were eQTL and cQTL whose allelic effects differed across tissues, including local-eQTL for Pik3c2g detected in all three tissues but with distinct allelic effects. Leveraging overlapping measurements of gene expression and chromatin accessibility on the same mice from multiple tissues, we used mediation analysis to identify chromatin and gene expression intermediates of eQTL effects. Based on QTL and mediation analyses over multiple tissues, we propose a causal model for the distal genetic regulation of Akr1e1, a gene involved in glycogen metabolism, through the zinc finger transcription factor Zfp985 and chromatin intermediates. This analysis demonstrates the complexity of transcriptional and chromatin dynamics and their regulation over multiple tissues, as well as the value of the CC and related genetic resource populations for identifying specific regulatory mechanisms within cells and tissues.

Klíčová slova:

Gene expression – Gene mapping – Gene regulation – Haplotypes – Chromatin – Kidneys – Mammalian genomics – Quantitative trait loci


Zdroje

1. Schadt EE. Molecular networks as sensors and drivers of common human diseases. Nature. 2009;461(7261):218–223. doi: 10.1038/nature08454 19741703

2. Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nature Reviews Genetics. 2018;19(8):491–504. doi: 10.1038/s41576-018-0016-z 29844615

3. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology. 1986;51(6):1173–1182. doi: 10.1037//0022-3514.51.6.1173 3806354

4. MacKinnon DP, Fairchild AJ, Fritz MS. Mediation Analysis. Annual Review of Psychology. 2007;58(1):593–614. doi: 10.1146/annurev.psych.58.110405.085542 16968208

5. Imai K, Keele L, Yamamoto T. Mediation Analysis. Statistical Science. 2010;25(1):51–71. doi: 10.1214/10-STS321

6. Richmond RC, Hemani G, Tilling K, Davey Smith G, Relton CL. Challenges and novel approaches for investigating molecular mediation. Human Molecular Genetics. 2016;25(R2):R149–R156. doi: 10.1093/hmg/ddw197 27439390

7. Degner JF, Pai AA, Pique-Regi R, Veyrieras JB, Gaffney DJ, Pickrell JK, et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature. 2012;482(7385):390–4. doi: 10.1038/nature10808 22307276

8. Pai AA, Pritchard JK, Gilad Y. The genetic and mechanistic basis for variation in gene regulation. PLoS Genetics. 2015;11(1):e1004857. doi: 10.1371/journal.pgen.1004857 25569255

9. Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, et al. Genomic variation. Impact of regulatory variation from RNA to protein. Science (New York, NY). 2015;347(6222):664–7. doi: 10.1126/science.1260793

10. Yang F, Wang J, GTEx Consortium, Pierce BL, Chen LS. Identifying cis-mediators for trans-eQTLs across many human tissues using genomic mediation analysis. Genome Research. 2017;27(11):1859–1871. doi: 10.1101/gr.216754.116 29021290

11. Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, McCormick C, et al. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Research. 2014;24(1):14–24. doi: 10.1101/gr.155192.113 24092820

12. Alasoo K, Rodrigues J, Mukhopadhyay S, Knights AJ, Mann AL, Kundu K, et al. Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response. Nature Genetics. 2018; p. 102392. doi: 10.1038/s41588-018-0046-7

13. Roytman M, Kichaev G, Gusev A, Pasaniuc B. Methods for fine-mapping with chromatin and expression data. PLoS Genetics. 2018;14(2):e1007240. doi: 10.1371/journal.pgen.1007240 29481575

14. Wu Y, Zeng J, Zhang F, Zhu Z, Qi T, Zheng Z, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nature Communications. 2018;9(1):918. doi: 10.1038/s41467-018-03371-0 29500431

15. Raulerson CK, Ko A, Kidd JC, Currin KW, Brotman SM, Cannon ME, et al. Adipose Tissue Gene Expression Associations Reveal Hundreds of Candidate Genes for Cardiometabolic Traits. The American Journal of Human Genetics. 2019. doi: 10.1016/j.ajhg.2019.09.001

16. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. American Journal of Human Genetics. 2017;101(1):5–22. doi: 10.1016/j.ajhg.2017.06.005 28686856

17. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics. 2004;36(11):1133–1137. doi: 10.1038/ng1104-1133 15514660

18. Collaborative Cross Consortium. The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics. 2012;190(2):389–401. doi: 10.1534/genetics.111.132639 22345608

19. Srivastava A, Morgan AP, Najarian ML, Sarsani VK, Sigmon JS, Shorter JR, et al. Genomes of the mouse collaborative cross. Genetics. 2017;206(2):537–556. doi: 10.1534/genetics.116.198838 28592495

20. Churchill G, Gatti D, Munger S, Svenson K. The Diversity outbred mouse population. Mammalian Genome. 2012;23:713–8. doi: 10.1007/s00335-012-9414-2 22892839

21. de Koning DJ, McIntyre LM. Back to the Future: Multiparent Populations Provide the Key to Unlocking the Genetic Basis of Complex Traits. G3 (Bethesda, Md). 2017;7(6):1617–1618. doi: 10.1534/g3.117.042846

22. Chick JM, Munger SC, Simecek P, Huttlin EL, Choi K, Gatti DM, et al. Defining the consequences of genetic variation on a proteome-wide scale. Nature. 2016;534(7608):500–5. doi: 10.1038/nature18270 27309819

23. Skelly DA, Czechanski A, Byers C, Aydin S, Spruce C, Olivier C, et al. Genetic variation influences pluripotent ground state stability in mouse embryonic stem cells through a hierarchy of molecular phenotypes. bioRxiv. 2019.

24. Zhang Z, Wang W, Valdar W. Bayesian modeling of haplotype effects in multiparent populations. Genetics. 2014;198(1):139–56. doi: 10.1534/genetics.114.166249 25236455

25. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33(18):2938–2940. doi: 10.1093/bioinformatics/btx364 28645171

26. Keele GR, Crouse WL, Kelada SNP, Valdar W. Determinants of QTL Mapping Power in the Realized Collaborative Cross. G3 (Bethesda, Md). 2019;9(May):459966.

27. Aylor DL, Valdar W, Foulds-mathes W, Buus RJ, Verdugo RA, Baric RS, et al. Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Research. 2011;21:1213–22. doi: 10.1101/gr.111310.110 21406540

28. Rieseberg LH, Archer MA, Wayne RK. Transgressive segregation, adaptation and speciation. Heredity. 1999;83(4):363–372. doi: 10.1038/sj.hdy.6886170 10583537

29. Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, et al. Subspecific origin and haplotype diversity in the laboratory mouse. Nature Genetics. 2011;43(7):648–55. doi: 10.1038/ng.847 21623374

30. Wang JR, de Villena FPM, McMillan L. Comparative analysis and visualization of multiple collinear genomes. BMC Bioinformatics. 2012;13(S3):S13. doi: 10.1186/1471-2105-13-S3-S13 22536897

31. Crowley JJ, Zhabotynsky V, Sun W, Huang S, Pakatci IK, Kim Y, et al. Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance. Nature Genetics. 2015;47(4):353–60. doi: 10.1038/ng.3222 25730764

32. Braccini L, Ciraolo E, Campa CC, Perino A, Longo DL, Tibolla G, et al. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nature Communications. 2015;6(1):7400. doi: 10.1038/ncomms8400 26100075

33. Keller MP, Gatti DM, Schueler KL, Rabaglia ME, Stapleton DS, Simecek P, et al. Genetic Drivers of Pancreatic Islet Function. Genetics. 2018;209(1):335–356. doi: 10.1534/genetics.118.300864 29567659

34. Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30(19):2811–2812. doi: 10.1093/bioinformatics/btu393 24930139

35. Hamilton-Williams EE, Wong SBJ, Martinez X, Rainbow DB, Hunter KM, Wicker LS, et al. Idd9.2 and Idd9.3 Protective Alleles Function in CD4+ T-Cells and Nonlymphoid Cells to Prevent Expansion of Pathogenic Islet-Specific CD8+ T-Cells. Diabetes. 2010;59(6):1478–1486. doi: 10.2337/db09-1801 20299469

36. Ecco G, Imbeault M, Trono D. KRAB zinc finger proteins. Development. 2017;144(15):2719–2729. doi: 10.1242/dev.132605 28765213

37. Hamilton-Williams EE, Rainbow DB, Cheung J, Christensen M, Lyons PA, Peterson LB, et al. Fine mapping of type 1 diabetes regions Idd9.1 and Idd9.2 reveals genetic complexity. Mammalian Genome. 2013;24(9-10):358–75. doi: 10.1007/s00335-013-9466-y 23934554

38. Richards AL, Jones L, Moskvina V, Kirov G, Gejman PV, Levinson DF, et al. Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain. Molecular Psychiatry. 2012;17(2):193–201. doi: 10.1038/mp.2011.11 21339752

39. Bryois J, Garrett ME, Song L, Safi A, Giusti-Rodriguez P, Johnson GD, et al. Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nature Communications. 2018;9(12):3121. doi: 10.1038/s41467-018-05379-y 30087329

40. Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–213. doi: 10.1038/nature24277

41. Fagny M, Paulson JN, Kuijjer ML, Sonawane AR, Chen C, Lopes-Ramos CM, et al. Exploring regulation in tissues with eQTL networks. Proceedings of the National Academy of Sciences. 2017;114(9):7841–50. doi: 10.1073/pnas.1707375114

42. Huang GJ, Shifman S, Valdar W, Johannesson M, Yalcin B, Taylor MS, et al. High resolution mapping of expression QTLs in heterogeneous stock mice in multiple tissues. Genome Research. 2009;19(6):1133–1140. doi: 10.1101/gr.088120.108 19376938

43. Sul JH, Han B, Ye C, Choi T, Eskin E. Effectively Identifying eQTLs from Multiple Tissues by Combining Mixed Model and Meta-analytic Approaches. PLoS Genetics. 2013;9(6):e1003491. doi: 10.1371/journal.pgen.1003491 23785294

44. Fu J, Wolfs MGM, Deelen P, Westra HJ, Fehrmann RSN, Te Meerman GJ, et al. Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression. PLoS Genetics. 2012;8(1):e1002431. doi: 10.1371/journal.pgen.1002431 22275870

45. Flutre T, Wen X, Pritchard J, Stephens M. A statistical framework for joint eQTL analysis in multiple tissues. PLoS Genetics. 2013;9(5):e1003486. doi: 10.1371/journal.pgen.1003486 23671422

46. Acharya CR, McCarthy JM, Owzar K, Allen AS. Exploiting expression patterns across multiple tissues to map expression quantitative trait loci. BMC Bioinformatics. 2016;17(1):257. doi: 10.1186/s12859-016-1123-5 27341818

47. Rutledge H, Aylor DL, Carpenter DE, Peck BC, Chines P, Ostrowski LE, et al. Genetic regulation of Zfp30, CXCL1, and neutrophilic inflammation in murine lung. Genetics. 2014;198(2):735–45. doi: 10.1534/genetics.114.168138 25114278

48. Kelada SNP, Carpenter DE, Aylor DL, Chines P, Rutledge H, Chesler EJ, et al. Integrative genetic analysis of allergic inflammation in the murine lung. American Journal of Respiratory Cell and Molecular Giology. 2014;51(3):436–45. doi: 10.1165/rcmb.2013-0501OC

49. Xu S. Theoretical basis of the Beavis effect. Genetics. 2003;165(4):2259–68. 14704201

50. Wei J, Xu S. A random-model approach to QTL mapping in multiparent advanced generation intercross (MAGIC) populations. Genetics. 2016;202(2):471–486. doi: 10.1534/genetics.115.179945 26715662

51. Keele GR, Prokop JW, He H, Holl K, Littrell J, Deal A, et al. Genetic Fine-Mapping and Identification of Candidate Genes and Variants for Adiposity Traits in Outbred Rats. Obesity. 2018;26(1):213–222. doi: 10.1002/oby.22075 29193816

52. Kaeppler SM. Quantitative trait locus mapping using sets of near-isogenic lines: Relative power comparisons and technical considerations. Theoretical and Applied Genetics. 1997;95(3):384–392. doi: 10.1007/s001220050574

53. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. In: Current Protocols in Molecular Biology. vol. 2015. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2015. p. 21.29.1–21.29.9. Available from: http://doi.wiley.com/10.1002/0471142727.mb2129s109.

54. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods. 2013;10(12):1213–8. doi: 10.1038/nmeth.2688 24097267

55. Shibata Y, Sheffield NC, Fedrigo O, Babbitt CC, Wortham M, Tewari AK, et al. Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection. PLoS Genetics. 2012;8(6):e1002789. doi: 10.1371/journal.pgen.1002789 22761590

56. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. 2010;26(6):841–842.

57. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140. doi: 10.1093/bioinformatics/btp616 19910308

58. Fu CP, Welsh CE, de Villena FPM, McMillan L. Inferring ancestry in admixed populations using microarray probe intensities. In: Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine—BCB’12. New York, New York, USA: ACM Press; 2012. p. 105–112.

59. Morgan AP, Fu CP, Kao CY, Welsh CE, Didion JP, Yadgary L, et al. The Mouse Universal Genotyping Array: From Substrains to Subspecies. G3 (Bethesda, Md). 2016;6(2):263–279. doi: 10.1534/g3.115.022087

60. Shorter JR, Najarian ML, Bell TA, Blanchard M, Ferris MT, Hock P, et al. Whole Genome Sequencing and Progress Towards Full Inbreeding of the Mouse Collaborative Cross Population. G3: Genes, Genomes, Genetics. 2019. doi: 10.1534/g3.119.400039

61. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43(7):e47. doi: 10.1093/nar/gkv007 25605792

62. Benjamini Y, Hochberg Y Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society, Series B. 1995;57(1):289–300.

63. Sarkar SK, Chang CK. The Simes Method for Multiple Hypothesis Testing With Positively Dependent Test Statistics. Journal of the American Statistical Association. 1997;92(440):1601. doi: 10.1080/01621459.1997.10473682

64. Xiong Q, Mukherjee S, Furey TS. GSAASeqSP: a toolset for gene set association analysis of RNA-Seq data. Scientific Reports. 2014;4:6347. doi: 10.1038/srep06347 25213199

65. Mott R, Talbot CJ, Turri MG, Collins AC, Flint J. A method for fine mapping quantitative trait loci in outbred animal stocks. Proceedings of the National Academy of Sciences. 2000;97(23):12649–54. doi: 10.1073/pnas.230304397

66. Haley CS, Knott SA. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity. 1992;69:315–24. doi: 10.1038/hdy.1992.131 16718932

67. Martínez O, Curnow RN. Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theoretical and Applied Genetics. 1992;85(4):480–488. doi: 10.1007/BF00222330 24197463

68. Valdar W, Flint J, Mott R. Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics. 2006;172(3):1783–97. doi: 10.1534/genetics.104.039313 16361245

69. Gralinski LE, Ferris MT, Aylor DL, Whitmore AC, Green R, Frieman MB, et al. Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross. PLoS Genetics. 2015;11(10):e1005504. doi: 10.1371/journal.pgen.1005504 26452100

70. Kelada SNP. Plethysmography Phenotype QTL in Mice Before and After Allergen Sensitization and Challenge. G3 (Bethesda, Md). 2016;6(9):2857–2865. doi: 10.1534/g3.116.032912

71. Donoghue LJ, Livraghi-Butrico A, McFadden KM, Thomas JM, Chen G, Grubb BR, et al. Identification of trans Protein QTL for Secreted Airway Mucins in Mice and a Causal Role for Bpifb1. Genetics. 2017;207(2):801–812. doi: 10.1534/genetics.117.300211 28851744

72. King EG, Merkes CM, McNeil CL, Hoofer SR, Sen S, Broman KW, et al. Genetic dissection of a model complex trait using the Drosophila Synthetic Population Resource. Genome Research. 2012;22(8):1558–66. doi: 10.1101/gr.134031.111 22496517

73. Dudbridge F, Koeleman BPC. Efficient Computation of Significance Levels for Multiple Associations in Large Studies of Correlated Data, Including Genomewide Association Studies. The American Journal of Human Genetics. 2004;75(3):424–435. doi: 10.1086/423738 15266393

74. Doerge R, Churchill G. Permutation tests for multiple loci affecting a quantitative character. Genetics. 1996;142(1977):285–94. 8770605

75. Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nature Genetics. 2005;37(3):233–242. doi: 10.1038/ng1518 15711545

76. Robinson GK. That BLUP is a Good Thing: The Estimation of Random Effects. Statistical Science. 1991;6(1):15–51. doi: 10.1214/ss/1177011933

77. Baud A, Guryev V, Hummel O, Johannesson M, Rat Genome Sequencing and Mapping Consortium, Flint J. Genomes and phenomes of a population of outbred rats and its progenitors. Scientific Data. 2014;1:140011. doi: 10.1038/sdata.2014.11 25977769

78. Yalcin B, Flint J, Mott R. Using progenitor strain information to identify quantitative trait nucleotides in outbred mice. Genetics. 2005;171(2):673–81. doi: 10.1534/genetics.104.028902 16085706

79. Oreper D, Cai Y, Tarantino LM, de Villena FPM, Valdar W. Inbred Strain Variant Database (ISVdb): A Repository for Probabilistically Informed Sequence Differences Among the Collaborative Cross Strains and Their Founders. G3 (Bethesda, Md). 2017;7(6):1623–1630. doi: 10.1534/g3.117.041491

80. Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics. 2009;25:1841–1842. doi: 10.1093/bioinformatics/btp328 19468054

81. Oreper D, Schoenrock SA, McMullan R, Ervin R, Farrington J, Miller DR, et al. Reciprocal F1 Hybrids of Two Inbred Mouse Strains Reveal Parent-of-Origin and Perinatal Diet Effects on Behavior and Expression. G3 (Bethesda, Md). 2018;8(11):3447–3468. doi: 10.1534/g3.118.200135

82. R Core Team. R: A Language and Environment for Statistical Computing; 2019. Available from: https://www.R-project.org/.


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Jak diagnostikovat a efektivně léčit CHOPN v roce 2024
Autoři: doc. MUDr. Vladimír Koblížek, Ph.D.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#