#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Bacterial killing by complement requires direct anchoring of membrane attack complex precursor C5b-7


Autoři: Dennis J. Doorduijn aff001;  Bart W. Bardoel aff001;  Dani A. C. Heesterbeek aff001;  Maartje Ruyken aff001;  Georgina Benn aff002;  Edward S. Parsons aff002;  Bart W. Hoogenboom aff002;  Suzan H. M. Rooijakkers aff001
Působiště autorů: Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands aff001;  London Centre for Nanotechnology, University College London, London, United Kingdom aff002;  Institute of Structural and Molecular Biology, University College London, London, United Kingdom aff003;  National Physical Laboratory, Teddington, United Kingdom aff004;  Department of Physics and Astronomy, University College London, London, United Kingdom aff005
Vyšlo v časopise: Bacterial killing by complement requires direct anchoring of membrane attack complex precursor C5b-7. PLoS Pathog 16(6): e1008606. doi:10.1371/journal.ppat.1008606
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008606

Souhrn

An important effector function of the human complement system is to directly kill Gram-negative bacteria via Membrane Attack Complex (MAC) pores. MAC pores are assembled when surface-bound convertase enzymes convert C5 into C5b, which together with C6, C7, C8 and multiple copies of C9 forms a transmembrane pore that damages the bacterial cell envelope. Recently, we found that bacterial killing by MAC pores requires local conversion of C5 by surface-bound convertases. In this study we aimed to understand why local assembly of MAC pores is essential for bacterial killing. Here, we show that rapid interaction of C7 with C5b6 is required to form bactericidal MAC pores on Escherichia coli. Binding experiments with fluorescently labelled C6 show that C7 prevents release of C5b6 from the bacterial surface. Moreover, trypsin shaving experiments and atomic force microscopy revealed that this rapid interaction between C7 and C5b6 is crucial to efficiently anchor C5b-7 to the bacterial cell envelope and form complete MAC pores. Using complement-resistant clinical E. coli strains, we show that bacterial pathogens can prevent complement-dependent killing by interfering with the anchoring of C5b-7. While C5 convertase assembly was unaffected, these resistant strains blocked efficient anchoring of C5b-7 and thus prevented stable insertion of MAC pores into the bacterial cell envelope. Altogether, these findings provide basic molecular insights into how bactericidal MAC pores are assembled and how bacteria evade MAC-dependent killing.

Klíčová slova:

Atomic force microscopy – Bacteria – Complement system – Flow cytometry – Gram negative bacteria – Lysis (medicine) – Red blood cells – Serine proteases


Zdroje

1. Bladen HA, Evans RT, Mergenhagen SE. Lesions in Escherichia coli membranes after action of antibody and complement. J Bacteriol. 1966;91(6):2377–81. 5329288

2. Medhurst FA, Glynn AA, Dourmashkin RR. Lesions in Escherichia coli cell walls caused by the action of mouse complement. Immunology. 1971;20(4):441–50. 4928548

3. Harriman GR, Podack ER, Braude AI, Corbeil LC, Esser AF, Curd JG. Activation of complement by serum-resistant Neisseria Gonorrhoeae: Assembly of the membrane attack complex without subsequent cell death. J Exp Med. 1982;156(4):1235–49. doi: 10.1084/jem.156.4.1235 6818318

4. Joiner KA, Brown EJ, Frank MM. Complement and bacteria. Annu Rev Immunol. 1984;2:461–91. doi: 10.1146/annurev.iy.02.040184.002333 6399850

5. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I—molecular mechanisms of activation and regulation. Front Immunol. 2015;6(JUN):1–30.

6. DiScipio RG, Linton SM, Rushmere NK. Function of the factor I modules (FIMS) of human complement component C6. J Biol Chem. 1999;274(45):31811–8. doi: 10.1074/jbc.274.45.31811 10542204

7. Preissner KT, Podack ER, Muller-Eberhard HJ. The Membrane Attack Complex of complement: relation of C7 to the metastable membrane binding site of the intermediate complex C5b-7. Vol. 135, Journal of Immunology. 1985.

8. DiScipio RG. Formation and structure of the C5b-7 complex of the lytic pathway of complement. J Biol Chem. 1992;267(24):17087–94. 1387399

9. Podack ER, Esser AF, Biesecker G, Müller-Eberhard HJ. Membrane attack complex of complement: a structural analysis of its assembly. J Exp Med. 1980;151(February):301–13.

10. Serna M, Giles JL, Morgan BP, Bubeck D. Structural basis of complement membrane attack complex formation. Nat Commun. 2016;7:10587. doi: 10.1038/ncomms10587 26841837

11. Menny A, Serna M, Boyd CM, Gardner S, Praveen Joseph A, Paul Morgan B, et al. CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers. Nat Commun. 2018;(2018):1–11.

12. Cooper NR, Müller-Eberhard HJ. The reaction mechanism of human C5 in immune hemolysis. J Exp Med. 1970;132(4):775–93. doi: 10.1084/jem.132.4.775 5508377

13. Goldlust MB, Shin HS, Hammer CH, Mayer MM. Studies of complement complex C5b,6 eluted from—EAC-6: reaction of C5b,6 with EAC4b,3b and evidence on the role of C2a and C3b in the activation of C5. J Immunol. 1974;113(3):998–1007. 4213402

14. Müller-Eberhard HJ. The membrane attack complex of complement. Annu Rev Immunol. 1986;4:503–28. doi: 10.1146/annurev.iy.04.040186.002443 3518749

15. Sharp TH, Koster AJ, Gros P. Heterogeneous MAC Initiator and Pore Structures in a Lipid Bilayer by Phase-Plate Cryo-electron Tomography. Cell Rep. 2016;15(1):1–8. doi: 10.1016/j.celrep.2016.03.002 27052168

16. Heesterbeek DAC, Bardoel BW, Parsons ES, Bennett I, Ruyken M, Doorduijn DJ, et al. Bacterial killing by complement requires membrane attack complex formation via surface-bound C5 convertases. EMBO J. 2019 Feb 15;38(4):1–17.

17. Doorduijn DJ, Rooijakkers SHM, Heesterbeek DAC. How the Membrane Attack Complex Damages the Bacterial Cell Envelope and Kills Gram‐Negative Bacteria. BioEssays. 2019;1900074:1900074.

18. DiScipio RG, Smith CA, Muller Eberhard HJ, Hugli TE. The activation of human complement component C5 by a fluid phase C5 convertase. J Biol Chem. 1983;258(17):10629–36. 6554279

19. Thompson RA, Lachmann PJ. Reactive lysis: the complement-mediated lysis of unsensitized cells. I. The characterization of the indicator factor and its identification as C7. J Exp Med. 1970;131(4):629–41. doi: 10.1084/jem.131.4.629 4193934

20. Lachmann PJ, Thompson RA. Reactive lysis: the complement-mediated lysis of unsensitized cells. II. The characterization of activated reactor as C56 and the participation of C8 and C9. J Exp Med. 1970;131(4):643–57. doi: 10.1084/jem.131.4.643 4193935

21. Parsons ES, Stanley GJ, Pyne ALB, Hodel AW, Nievergelt AP, Menny A, et al. Single-molecule kinetics of pore assembly by the membrane attack complex. Nat Commun. 2019;10(1):472274.

22. Popp MW, Antos JM, Grotenbreg GM, Spooner E, Ploegh HL. Sortagging: A versatile method for protein labeling. Nat Chem Biol. 2007;3(11):707–8. doi: 10.1038/nchembio.2007.31 17891153

23. Joiner KA, Hammer CH, Brown EJ, Cole RJ, Frank MM. Studies on the mechanism of bacterial resistance to complement-mediated killing. I. Terminal complement components are deposited and released from Salmonella minnesota S218 without causing bacterial death. J Exp Med. 1982;155(3):797–808. doi: 10.1084/jem.155.3.797 6801179

24. Joiner KA, Warren KA, Brown EJ, Swanson J, Frank MM. Studies on the mechanism of bacterial resistance to complement-mediated killing. IV. C5b-9 forms high molecular weight complexes with bacterial outer membrane constituents on serum-resistant but not on serum-sensitive Neisseria gonorrhoeae. J Immunol. 1983;131(3):1443–51. 6411816

25. Heesterbeek DAC, Martin NI, Velthuizen A, Duijst M, Ruyken M, Wubbolts R, et al. Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specific antibiotics. Sci Rep. 2019;9(1):1–10. doi: 10.1038/s41598-018-37186-2 30626917

26. Preissner KT, Podack ER, Muller-Eberhard HJ. Self-association of the seventh component of human complement (C7): dimerization and polymerization. Vol. 135, Journal of Immunology. 1985.

27. Marshall P, Hasegawa A, Davidson EA, Nussenzweig V, Whitlow M. Interaction between complement proteins C5b-7 and erythrocyte membrane sialic acid. J Exp Med. 1996;184(4):1225–32. doi: 10.1084/jem.184.4.1225 8879193

28. Leung C, Dudkina N V., Lukoyanova N, Hodel AW, Farabella I, Pandurangan AP, et al. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. Elife. 2014 Dec 2;3(domain 2):e04247. doi: 10.7554/eLife.04247 25457051

29. Leung C, Hodel AW, Brennan AJ, Lukoyanova N, Tran S, House CM, et al. Real-time visualization of perforin nanopore assembly. Nat Nanotechnol. 2017;12(5):467–73. doi: 10.1038/nnano.2016.303 28166206

30. Tschopp J, Podack ER, Muller-Eberhard HJ. Ultrastructure of the membrane attack complex of complement: Detection of the tetramolecular ‘ C9-polymerizing complex C5b-8. Proc Natl Acad Sci. 1982;79(December):7474–8.

31. Ramm LE, Whitlow MB, Mayer MM. Relationship between channel size and the number of C9 molecules in the C5b-9 complex. J Immunol. 1985;134(4):2594–9. 2579147

32. Bhakdi S, Tranum-Jensen J. C5b-9 assembly: Average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore. J Immunol. 1986;136(8):2999–3005. 3958488

33. Laine RO, Esser AF. Detection of refolding conformers of complement protein C9 during insertion into membranes. Nature. 1989 Sep 7;341(6237):63–5. doi: 10.1038/341063a0 2475785

34. Bloch EF, Schmetz MA, Foulds J, Hammer CH, Frank MM, Joiner KA. Multimeric C9 within C5b-9 is required for inner membrane damage to Escherichia coli J5 during complement killing. J Immunol. 1987;138(3):842–8. 3100618

35. Harriman GR, Esser AF, Podack ER, Wunderlich AC, Braude AI, Lint TF, et al. The role of C9 in complement-mediated killing of Neisseria. J Immunol. 1981 Dec;127(6):2386–90. 6795273

36. Dankert JR, Esser AF. Complement-mediated killing of Escherichia coli: dissipation of membrane potential by a C9-derived peptide. Biochemistry. 1986 Mar 11;25(5):1094–100. doi: 10.1021/bi00353a023 3516214

37. Doorduijn DJ, Rooijakkers SHM, van Schaik W, Bardoel BW. Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology. 2016 Oct;221(10):1102–9. doi: 10.1016/j.imbio.2016.06.014 27364766

38. Hovingh ES, van den Broek B, Jongerius I. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion. Front Microbiol. 2016;7(December):1–20.

39. Abreu AG, Barbosa AS. How Escherichia coli Circumvent Complement-Mediated Killing. Front Immunol. 2017;8(April):1–6.

40. Ermert D, Ram S, Laabei M. The hijackers guide to escaping complement: Lessons learned from pathogens. Mol Immunol. 2019;114(July):49–61.

41. Wooster DG, Maruvada R, Blom AM, Prasadarao N V. Logarithmic phase Escherichia coli K1 efficiently avoids serum killing by promoting C4bp-mediated C3b and C4b degradation. Immunology. 2006;117(4):482–93. doi: 10.1111/j.1365-2567.2006.02323.x 16556262

42. Miajlovic H, Smith SG. Bacterial self-defence: How Escherichia coli evades serum killing. FEMS Microbiol Lett. 2014;354(1):1–9. doi: 10.1111/1574-6968.12419 24617921

43. Joiner KA, Hammer C, Brown EJ, Frank MM. Studies on the mechanism of bacterial resistance to complement-mediated killing. II. C8 and C9 release C5b67 from the surface of Salmonella minnesota S218 because the Terminal Complex does not insert into the bacterial outer membrane. J Exp Med. 1982;155(March):809–19.

44. Joiner KA, Schmetz MA, Goldman RC, Leive L, Frank MM. Mechanism of bacterial resistance to complement-mediated killing: Inserted C5b-9 correlates with killing for Escherichia coli O111B4 varying in O-antigen capsule and O-polysaccharide coverage of lipid A core oligosaccharide. Infect Immun. 1984;45(1):113–7. 6203836

45. Tomas JM, Benedi VJ, Ciurana B, Jofre J. Role of capsule and O antigen in resistance of Klebsiella pneumoniae to serum bactericidal activity. Infect Immun. 1986;54(1):85–9. 3531020

46. Ciurana B, Tomas JM. Role of lipopolysaccharide and complement in susceptibility of Klebsiella pneumoniae to nonimmune serum. Infect Immun. 1987;55(11):2741–6. 3312009

47. Leying H, Suerbaum S, Kroll H, Stahl D, Opferkuch W. The Capsular Polysaccharide Is a Major Determinant of Serum Resistance in K-1-Positive Blood Culture Isolates of Escherichia col. Infect Immun. 1990;58(1):222–7. 2403532

48. Geoffroy MC, Floquet S, Métais A, Nassif X, Pelicic V. Large-scale analysis of the meningococcus genome by gene distruption: Resistance to complement-mediated lysis. Genome Res. 2003;13(3):391–8. doi: 10.1101/gr.664303 12618369

49. Bravo D, Silva C, Carter JA, Hoare A, Alvarez SA, Blondel CJ, et al. Growth-phase regulation of lipopolysaccharide O-antigen chain length influences serum resistance in serovars of Salmonella. J Med Microbiol. 2008 Aug 1;57(8):938–46.

50. Berends ETM, Dekkers JF, Nijland R, Kuipers A, Soppe JA, van Strijp JAG, et al. Distinct localization of the complement C5b-9 complex on Gram-positive bacteria. Cell Microbiol. 2013;15(12):1955–68. doi: 10.1111/cmi.12170 23869880

51. Joiner K, Brown E, Hammer C, Warren K, Frank M. Studies on the mechanism of bacterial resistance to complement-mediated killing. III. C5b-9 deposits stably on rough and type 7 S. pneumoniae without causing bacterial killing. J Immunol. 1983;130(2):845–9. 6848598

52. Berends ETM, Mohan S, Miellet WR, Ruyken M, Rooijakkers SHM. Contribution of the complement Membrane Attack Complex to the bactericidal activity of human serum. Mol Immunol. 2015;65(2):328–35. doi: 10.1016/j.molimm.2015.01.020 25725315

53. Nunn MA, Sharma A, Paesen GC, Adamson S, Lissina O, Willis AC, et al. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J Immunol. 2005;174(4):2084–91. doi: 10.4049/jimmunol.174.4.2084 15699138

54. Benn G, Pyne ALB, Ryadnov MG, Hoogenboom BW. Imaging live bacteria at the nanoscale: comparison of immobilisation strategies. Analyst. 2019;1–15.

55. Bestebroer J, Aerts PC, Rooijakkers SHM, Pandey MK, Köhl J, van Strijp JAG, et al. Functional basis for complement evasion by staphylococcal superantigen-like 7. Cell Microbiol. 2010;12(10):233–45.


Článek vyšel v časopise

PLOS Pathogens


2020 Číslo 6
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#