#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Virus interactions with bacteria: Partners in the infectious dance


Autoři: Ursula Neu aff001;  Bernardo A. Mainou aff002
Působiště autorů: Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany aff001;  Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America aff002;  Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America aff003
Vyšlo v časopise: Virus interactions with bacteria: Partners in the infectious dance. PLoS Pathog 16(2): e1008234. doi:10.1371/journal.ppat.1008234
Kategorie: Pearls
doi: https://doi.org/10.1371/journal.ppat.1008234


Zdroje

1. David SC, Norton T, Tyllis T, Wilson JJ, Singleton EV, Laan Z, et al. Direct interaction of whole-inactivated influenza A and pneumococcal vaccines enhances influenza-specific immunity. Nat Microbiol. 2019;4(8):1316–27. Epub 2019/05/22. doi: 10.1038/s41564-019-0443-4 31110357.

2. Rowe HM, Meliopoulos VA, Iverson A, Bomme P, Schultz-Cherry S, Rosch JW. Direct interactions with influenza promote bacterial adherence during respiratory infections. Nat Microbiol. 2019;4(8):1328–36. Epub 2019/05/22. doi: 10.1038/s41564-019-0447-0 31110359.

3. Erickson AK, Jesudhasan PR, Mayer MJ, Narbad A, Winter SE, Pfeiffer JK. Bacteria Facilitate Enteric Virus Co-infection of Mammalian Cells and Promote Genetic Recombination. Cell host & microbe. 2018;23(1):77–88 e5. Epub 2018/01/02. doi: 10.1016/j.chom.2017.11.007 29290575.

4. Robinson CM, Jesudhasan PR, Pfeiffer JK. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell host & microbe. 2014;15(1):36–46. doi: 10.1016/j.chom.2013.12.004 24439896.

5. Aguilera ER, Nguyen Y, Sasaki J, Pfeiffer JK. Bacterial Stabilization of a Panel of Picornaviruses. mSphere. 2019;4(2). Epub 2019/04/05. doi: 10.1128/mSphere.00183-19 30944213.

6. Waldman P, Meseguer A, Lucas F, Moulin L, Wurtzer S. Interaction of Human Enteric Viruses with Microbial Compounds: Implication for Virus Persistence and Disinfection Treatments. Environmental science & technology. 2017. Epub 2017/11/09. doi: 10.1021/acs.est.7b03875 29116763.

7. Almand EA, Moore MD, Outlaw J, Jaykus LA. Human norovirus binding to select bacteria representative of the human gut microbiota. PloS ONE. 2017;12(3):e0173124. Epub 2017/03/04. doi: 10.1371/journal.pone.0173124 28257478.

8. Li D, Breiman A, le Pendu J, Uyttendaele M. Binding to histo-blood group antigen-expressing bacteria protects human norovirus from acute heat stress. Front Microbiol. 2015;6:659. Epub 2015/07/21. doi: 10.3389/fmicb.2015.00659 26191052.

9. Berger AK, Yi H, Kearns DB, Mainou BA. Bacteria and bacterial envelope components enhance mammalian reovirus thermostability. PLoS Pathog. 2017;13(12):e1006768. Epub 2017/12/07. doi: 10.1371/journal.ppat.1006768 29211815.

10. Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science. 2011;334(6053):249–52. doi: 10.1126/science.1211057 21998395.

11. Tan M, Jiang X. Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol. 2005;13(6):285–93. doi: 10.1016/j.tim.2005.04.004 15936661.

12. Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science. 2014;346(6210):755–9. doi: 10.1126/science.1257147 25378626.

13. Thompson AJ, de Vries RP, Paulson JC. Virus recognition of glycan receptors. Curr Opin Virol. 2019;34:117–29. Epub 2019/03/09. doi: 10.1016/j.coviro.2019.01.004 30849709.

14. Stencel-Baerenwald JE, Reiss K, Reiter DM, Stehle T, Dermody TS. The sweet spot: defining virus-sialic acid interactions. Nat Rev Microbiol. 2014;12(11):739–49. doi: 10.1038/nrmicro3346 25263223.

15. Stroh LJ, Stehle T. Glycan Engagement by Viruses: Receptor Switches and Specificity. Annu Rev Virol. 2014;1(1):285–306. Epub 2014/11/03. doi: 10.1146/annurev-virology-031413-085417 26958723.

16. Shanker S, Hu L, Ramani S, Atmar RL, Estes MK, Venkataram Prasad BV. Structural features of glycan recognition among viral pathogens. Curr Opin Struct Biol. 2017;44:211–8. Epub 2017/06/08. doi: 10.1016/j.sbi.2017.05.007 28591681.

17. Buch MH, Liaci AM, O’Hara SD, Garcea RL, Neu U, Stehle T. Structural and Functional Analysis of Murine Polyomavirus Capsid Proteins Establish the Determinants of Ligand Recognition and Pathogenicity. PLoS Pathog. 2015;11(10):e1005104. Epub 2015/10/17. doi: 10.1371/journal.ppat.1005104 26474293.

18. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010;2(5):a000414. doi: 10.1101/cshperspect.a000414 20452953.

19. Hogle JM, Chow M, Filman DJ. Three-dimensional structure of poliovirus at 2.9 A resolution. Science. 1985;229(4720):1358–65. Epub 1985/09/27. doi: 10.1126/science.2994218 2994218.

20. Dietrich MH, Ogden KM, Long JM, Ebenhoch R, Thor A, Dermody TS, et al. Structural and Functional Features of the Reovirus sigma1 Tail. J Virol. 2018;92(14). Epub 2018/04/27. doi: 10.1128/JVI.00336-18 29695426.

21. Li Q, Yafal AG, Lee YM, Hogle J, Chow M. Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. J Virol. 1994;68(6):3965–70. Epub 1994/06/01. 7514682.

22. Strauss M, Filman DJ, Belnap DM, Cheng N, Noel RT, Hogle JM. Nectin-like interactions between poliovirus and its receptor trigger conformational changes associated with cell entry. J Virol. 2015;89(8):4143–57. Epub 2015/01/30. doi: 10.1128/JVI.03101-14 25631086.

23. Bostina M, Levy H, Filman DJ, Hogle JM. Poliovirus RNA is released from the capsid near a twofold symmetry axis. J Virol. 2011;85(2):776–83. Epub 2010/10/29. doi: 10.1128/JVI.00531-10 20980499.

24. Bubeck D, Filman DJ, Cheng N, Steven AC, Hogle JM, Belnap DM. The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the location of an externalized polypeptide that binds to membranes. J Virol. 2005;79(12):7745–55. Epub 2005/05/28. doi: 10.1128/JVI.79.12.7745-7755.2005 15919927.

25. Koehler M, Aravamudhan P, Guzman-Cardozo C, Dumitru AC, Yang J, Gargiulo S, et al. Glycan-mediated enhancement of reovirus receptor binding. Nat Commun. 2019;10(1):4460. Epub 2019/10/03. doi: 10.1038/s41467-019-12411-2 31575869.

26. Shi Z, Zou J, Zhang Z, Zhao X, Noriega J, Zhang B, et al. Segmented Filamentous Bacteria Prevent and Cure Rotavirus Infection. Cell. 2019;179(3):644–58 e13. Epub 2019/10/15. doi: 10.1016/j.cell.2019.09.028 31607511.

27. Cochrane SA, Vederas JC. Lipopeptides from Bacillus and Paenibacillus spp.: A Gold Mine of Antibiotic Candidates. Med Res Rev. 2016;36(1):4–31. Epub 2014/05/29. doi: 10.1002/med.21321 24866700.

28. Johnson BA, Hage A, Kalveram B, Mears M, Plante JA, Rodriguez SE, et al. Peptidoglycan associated cyclic lipopeptide disrupts viral infectivity. J Virol. 2019. Epub 2019/08/30. doi: 10.1128/JVI.01282-19 31462558.

29. Baldridge MT, Nice TJ, McCune BT, Yokoyama CC, Kambal A, Wheadon M, et al. Commensal microbes and interferon-lambda determine persistence of enteric murine norovirus infection. Science. 2015;347(6219):266–9. doi: 10.1126/science.1258025 25431490.

30. Rodriguez-Diaz J, Garcia-Mantrana I, Vila-Vicent S, Gozalbo-Rovira R, Buesa J, Monedero V, et al. Relevance of secretor status genotype and microbiota composition in susceptibility to rotavirus and norovirus infections in humans. Sci Rep. 2017;7:45559. Epub 2017/03/31. doi: 10.1038/srep45559 28358023.

31. Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res. 2014;55(8):1553–95. Epub 2014/05/20. doi: 10.1194/jlr.R049437 24838141.

32. Kilic T, Koromyslova A, Hansman GS. Structural Basis for Human Norovirus Capsid Binding to Bile Acids. J Virol. 2019;93(2). Epub 2018/10/26. doi: 10.1128/JVI.01581-18 30355683.

33. Orchard RC, Wilen CB, Doench JG, Baldridge MT, McCune BT, Lee YC, et al. Discovery of a proteinaceous cellular receptor for a norovirus. Science. 2016;353(6302):933–6. Epub 2016/08/20. doi: 10.1126/science.aaf1220 27540007.

34. Sherman MB, Williams AN, Smith HQ, Nelson C, Wilen CB, Fremont DH, et al. Bile Salts Alter the Mouse Norovirus Capsid Conformation: Possible Implications for Cell Attachment and Immune Evasion. J Virol. 2019;93(19). Epub 2019/07/26. doi: 10.1128/JVI.00970-19 31341042.

35. Wilen CB, Lee S, Hsieh LL, Orchard RC, Desai C, Hykes BL Jr., et al. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science. 2018;360(6385):204–8. Epub 2018/04/14. doi: 10.1126/science.aar3799 29650672.

36. Falsey AR, Becker KL, Swinburne AJ, Nylen ES, Formica MA, Hennessey PA, et al. Bacterial complications of respiratory tract viral illness: a comprehensive evaluation. The Journal of infectious diseases. 2013;208(3):432–41. Epub 2013/05/11. doi: 10.1093/infdis/jit190 23661797.

37. Smith CM, Sandrini S, Datta S, Freestone P, Shafeeq S, Radhakrishnan P, et al. Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection. Am J Respir Crit Care Med. 2014;190(2):196–207. Epub 2014/06/19. doi: 10.1164/rccm.201311-2110OC 24941423.

38. Hament JM, Aerts PC, Fleer A, van Dijk H, Harmsen T, Kimpen JL, et al. Direct binding of respiratory syncytial virus to pneumococci: a phenomenon that enhances both pneumococcal adherence to human epithelial cells and pneumococcal invasiveness in a murine model. Pediatr Res. 2005;58(6):1198–203. Epub 2005/11/25. doi: 10.1203/01.pdr.0000188699.55279.1b 16306193.

39. Abt MC, Artis D. The dynamic influence of commensal bacteria on the immune response to pathogens. Curr Opin Microbiol. 2013;16(1):4–9. Epub 2013/01/22. doi: 10.1016/j.mib.2012.12.002 23332724.

40. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41. Epub 2014/04/01. doi: 10.1016/j.cell.2014.03.011 24679531.

41. Wilks J, Lien E, Jacobson AN, Fischbach MA, Qureshi N, Chervonsky AV, et al. Mammalian Lipopolysaccharide Receptors Incorporated into the Retroviral Envelope Augment Virus Transmission. Cell host & microbe. 2015;18(4):456–62. doi: 10.1016/j.chom.2015.09.005 26468748.

42. Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C, Chervonsky AV, et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science. 2011;334(6053):245–9. doi: 10.1126/science.1210718 21998394.

43. Ingle H, Lee S, Ai T, Orvedahl A, Rodgers R, Zhao G, et al. Viral complementation of immunodeficiency confers protection against enteric pathogens via interferon-lambda. Nat Microbiol. 2019;4(7):1120–8. Epub 2019/04/03. doi: 10.1038/s41564-019-0416-7 30936486.

44. Kaetzel CS. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host-microbial mutualism. Immunol Lett. 2014;162(2 Pt A):10–21. Epub 2014/06/01. doi: 10.1016/j.imlet.2014.05.008 24877874.

45. Turula H, Bragazzi Cunha J, Mainou BA, Ramakrishnan SK, Wilke CA, Gonzalez-Hernandez MB, et al. Natural Secretory Immunoglobulins Promote Enteric Viral Infections. J Virol. 2018;92(23). Epub 2018/09/21. doi: 10.1128/JVI.00826-18 30232191.

46. Uchiyama R, Chassaing B, Zhang B, Gewirtz AT. Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. The Journal of infectious diseases. 2014;210(2):171–82. doi: 10.1093/infdis/jiu037 24436449.

47. Babb R, Chen A, Ogunniyi AD, Hirst TR, Kara EE, McColl SR, et al. Enhanced protective responses to a serotype-independent pneumococcal vaccine when combined with an inactivated influenza vaccine. Clin Sci (Lond). 2017;131(2):169–80. Epub 2016/11/26. doi: 10.1042/CS20160475 27885052.


Článek vyšel v časopise

PLOS Pathogens


2020 Číslo 2
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Důležitost adherence při depresivním onemocnění
nový kurz
Autoři: MUDr. Eliška Bartečková, Ph.D.

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková, Ph.D.

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#