#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Differential association of air pollution exposure with neonatal and postneonatal mortality in England and Wales: A cohort study


Autoři: Sarah J. Kotecha aff001;  W. John Watkins aff001;  John Lowe aff001;  Jonathan Grigg aff002;  Sailesh Kotecha aff001
Působiště autorů: Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom aff001;  Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom aff002
Vyšlo v časopise: Differential association of air pollution exposure with neonatal and postneonatal mortality in England and Wales: A cohort study. PLoS Med 17(10): e32767. doi:10.1371/journal.pmed.1003400
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pmed.1003400

Souhrn

Background

Many but not all studies suggest an association between air pollution exposure and infant mortality. We sought to investigate whether pollution exposure is differentially associated with all-cause neonatal or postneonatal mortality, or specific causes of infant mortality.

Methods and findings

We separately investigated the associations of exposure to particulate matter with aerodynamic diameter ≤ 10 μm (PM10), nitrogen dioxide (NO2), and sulphur dioxide (SO2) with all-cause infant, neonatal, and postneonatal mortality, and with specific causes of infant deaths in 7,984,366 live births between 2001 and 2012 in England and Wales. Overall, 51.3% of the live births were male, and there were 36,485 infant deaths (25,110 neonatal deaths and 11,375 postneonatal deaths). We adjusted for the following major confounders: deprivation, birthweight, maternal age, sex, and multiple birth. Adjusted odds ratios (95% CI; p-value) for infant deaths were significantly increased for NO2, PM10, and SO2 (1.066 [1.027, 1.107; p = 0.001], 1.044 [1.007, 1.082; p = 0.017], and 1.190 [1.146, 1.235; p < 0.001], respectively) when highest and lowest pollutant quintiles were compared; however, neonatal mortality was significantly associated with SO2 (1.207 [1.154, 1.262; p < 0.001]) but not significantly associated with NO2 and PM10 (1.044 [0.998, 1.092; p = 0.059] and 1.008 [0.966, 1.052; p = 0.702], respectively). Postneonatal mortality was significantly associated with all pollutants: NO2, 1.108 (1.038, 1.182; p < 0.001); PM10, 1.117 (1.050, 1.188; p < 0.001); and SO2, 1.147 (1.076, 1.224; p < 0.001). Whilst all were similarly associated with endocrine causes of infant deaths (NO2, 2.167 [1.539, 3.052; p < 0.001]; PM10, 1.433 [1.066, 1.926; p = 0.017]; and SO2, 1.558 [1.147, 2.116; p = 0.005]), they were differentially associated with other specific causes: NO2 and PM10 were associated with an increase in infant deaths from congenital malformations of the nervous (NO2, 1.525 [1.179, 1.974; p = 0.001]; PM10, 1.457 [1.150, 1.846; p = 0.002]) and gastrointestinal systems (NO2, 1.214 [1.006, 1.466; p = 0.043]; PM10, 1.312 [1.096, 1.571; p = 0.003]), and NO2 was also associated with deaths from malformations of the respiratory system (1.306 [1.019, 1.675; p = 0.035]). In contrast, SO2 was associated with an increase in infant deaths from perinatal causes (1.214 [1.156, 1.275; p < 0.001]) and from malformations of the circulatory system (1.172 [1.011, 1.358; p = 0.035]). A limitation of this study was that we were not able to study associations of air pollution exposure and infant mortality during the different trimesters of pregnancy. In addition, we were not able to control for all confounding factors such as maternal smoking.

Conclusions

In this study, we found that NO2, PM10, and SO2 were differentially associated with all-cause mortality and with specific causes of infant, neonatal, and postneonatal mortality.

Klíčová slova:

Aerodynamics – Air pollution – Congenital anomalies – Infants – Neonates – Particulates – Pollution – Pregnancy


Zdroje

1. World Health Organization. Don’t pollute my future! The impact of the environment on children’s health. Geneva: World Health Organization; 2017 [cited 2020 Sep 18]. https://www.who.int/ceh/publications/don-t-pollute-my-future/en/.

2. Glinianaia SV, Rankin J, Bell R, Pless-Mulloli T, Howel D. Does particulate air pollution contribute to infant death? A systematic review. Environ Health Perspect. 2004;112(14):1365–71. doi: 10.1289/ehp.6857 15471726

3. Woodruff TJ, Grillo J, Schoendorf KC. The relationship between selected causes of postneonatal infant mortality and particulate air pollution in the United States. Environ Health Perspect. 1997;105(6):608–12. doi: 10.1289/ehp.97105608 9288495

4. Kaiser R, Romieu I, Medina S, Schwartz J, Krzyzanowski M, Kunzli N. Air pollution attributable postneonatal infant mortality in U.S. metropolitan areas: a risk assessment study. Environ Health. 2004;3(1):4. doi: 10.1186/1476-069X-3-4 15128459

5. Bobak M, Leon DA. The effect of air pollution on infant mortality appears specific for respiratory causes in the postneonatal period. Epidemiology. 1999;10(6):666–70. 10535778

6. Woodruff TJ, Parker JD, Schoendorf KC. Fine particulate matter (PM2.5) air pollution and selected causes of postneonatal infant mortality in California. Environ Health Perspect. 2006;114(5):786–90. doi: 10.1289/ehp.8484 16675438

7. Son JY, Cho YS, Lee JT. Effects of air pollution on postneonatal infant mortality among firstborn infants in Seoul, Korea: case-crossover and time-series analyses. Arch Environ Occup Health. 2008;63(3):108–13. doi: 10.3200/AEOH.63.3.108-113 18980873

8. Lin CA, Pereira LA, Nishioka DC, Conceicao GM, Braga AL, Saldiva PH. Air pollution and neonatal deaths in Sao Paulo, Brazil. Braz J Med Biol Res. 2004;37(5):765–70. doi: 10.1590/s0100-879x2004000500019 15107940

9. de Medeiros AP, Gouveia N, Machado RP, de Souza MR, Alencar GP, Novaes HM, et al. Traffic-related air pollution and perinatal mortality: a case-control study. Environ Health Perspect. 2009;117(1):127–32. doi: 10.1289/ehp.11679 19165399

10. Tong S, Colditz P. Air pollution and sudden infant death syndrome: a literature review. Paediatr Perinat Epidemiol. 2004;18(5):327–35. doi: 10.1111/j.1365-3016.2004.00565.x 15367319

11. Knobel HH, Chen CJ, Liang KY. Sudden infant death syndrome in relation to weather and optimetrically measured air pollution in Taiwan. Pediatrics. 1995;96(6):1106–10. 7491229

12. Dales R, Burnett RT, Smith-Doiron M, Stieb DM, Brook JR. Air pollution and sudden infant death syndrome. Pediatrics. 2004;113(6):e628–31. doi: 10.1542/peds.113.6.e628 15173546

13. Lipfert FW, Zhang J, Wyzga RE. Infant mortality and air pollution: a comprehensive analysis of U.S. data for 1990. J Air Waste Manag Assoc. 2000;50(8):1350–66. doi: 10.1080/10473289.2000.10464168 11002598

14. UK Air. Modelled background pollution data. London: Department for Environment, Food and Rural Affairs; 2020 [cited 2020 Sep 22]. https://uk-air.defra.gov.uk/data/pcm-data.

15. Payne RA, Abel GA. UK indices of multiple deprivation—a way to make comparisons across constituent countries easier. Health Statistics Quarterly 53. Newport: Office for National Statistics; 2012 [cited 2020 Sep 18]. http://www.ons.gov.uk/ons/rel/hsq/health-statistics-quarterly/no—53—spring-2012/uk-indices-of-multiple-deprivation.html.

16. University of London, Institute of Education, Centre for Longitudinal Studies. Millennium Cohort Study: fourth survey, 2008. 7th edition. Colchester: UK Data Service; 2017.

17. Liu NM, Grigg J. Diesel, children and respiratory disease. BMJ Paediatr Open. 2018;2:e000210. doi: 10.1136/bmjpo-2017-000210 29862329

18. Smith RB, Fecht D, Gulliver J, Beevers SD, Dajnak D, Blangiardo M, et al. Impact of London’s road traffic air and noise pollution on birth weight: retrospective population based cohort study. BMJ. 2017;359:j5299. doi: 10.1136/bmj.j5299 29208602

19. Estarlich M, Ballester F, Davdand P, Llop S, Esplugues A, Fernandez-Somoano A, et al. Exposure to ambient air pollution during pregnancy and preterm birth: a Spanish multicenter birth cohort study. Environ Res. 2016;147:50–8. doi: 10.1016/j.envres.2016.01.037 26851724

20. Pedersen M, Giorgis-Allemand L, Bernard C, Aguilera I, Andersen AM, Ballester F, et al. Ambient air pollution and low birthweight: a European cohort study (ESCAPE). Lancet Respir Med. 2013;1(9):695–704. doi: 10.1016/S2213-2600(13)70192-9 24429273

21. Dastoorpoor M, Idani E, Goudarzi G, Khanjani N. Acute effects of air pollution on spontaneous abortion, premature delivery, and stillbirth in Ahvaz, Iran: a time-series study. Environ Sci Pollut Res. 2018; 25:5447–58.

22. Arinola GO, Dutta A, Oluwole O, Olopade CO. Household air pollution, levels of micronutrients and heavy metals in cord and maternal blood, and pregnancy outcomes. Int J Environ Res Public Health. 2018;15(12):2891.

23. Kulkarni N, Pierse N, Ruston L, Grigg J. Carbon in airway macrophages and lung function in children. N Engl J Med. 2006;355(1):21–30. doi: 10.1056/NEJMoa052972 16822993

24. Carosino CM, Bein KJ, Plummer LE, Castaneda AR, Zhao Y, Wexler AS, et al. Allergic airway inflammation is differentially exacerbated by daytime and nighttime ultrafine and submicron fine ambient particles: heme oxygenase-1 as an indicator of PM-mediated allergic inflammation. J Toxicol Environ Health A. 2015;78(4):254–66. doi: 10.1080/15287394.2014.959627 25679046

25. Li R, Kou X, Tian J, Meng Z, Cai Z, Cheng F, et al. Effect of sulfur dioxide on inflammatory and immune regulation in asthmatic rats. Chemosphere. 2014;112:296–304. doi: 10.1016/j.chemosphere.2014.04.065 25048919

26. Wiegman CH, Li F, Clarke CJ, Jazrawi E, Kirkham P, Barnes PJ, et al. A comprehensive analysis of oxidative stress in the ozone-induced lung inflammation mouse model. Clin Sci (Lond). 2014;126(6):425–40.

27. Baldacci S, Gorini F, Santoro M, Pierini A, Minichilli F, Bianchi F. Environmental and individual exposure and the risk of congenital anomalies: a review of recent epidemiological evidence. Epidemiol Prev. 2018;42(3–4 Suppl 1):1–34. doi: 10.19191/EP18.3-4.S1.P001.057 30066535

28. Gauderman WJ, Urman R, Avol E, Berhane K, McConnell R, Rappaport E, et al. Association of improved air quality with lung development in children. N Engl J Med. 2015;372(10):905–13. doi: 10.1056/NEJMoa1414123 25738666

29. Ren S, Haynes E, Hall E, Hossain M, Chen A, Muglia L, et al. Periconception exposure to air pollution and risk of congenital malformations. J Pediatr. 2018;193:76–84.e6. doi: 10.1016/j.jpeds.2017.09.076 29237538

30. Department for Environment, Food and Rural Affairs. Air quality statistics in the UK 1987 to 2018. London: Department for Environment, Food and Rural Affairs; 2019.


Článek vyšel v časopise

PLOS Medicine


2020 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#