#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance


Autoři: Andrew Hammond aff001;  Xenia Karlsson aff001;  Ioanna Morianou aff001;  Kyros Kyrou aff001;  Andrea Beaghton aff001;  Matthew Gribble aff001;  Nace Kranjc aff001;  Roberto Galizi aff001;  Austin Burt aff001;  Andrea Crisanti aff001;  Tony Nolan aff004
Působiště autorů: Department of Life Sciences, Imperial College London, London, United Kingdom aff001;  Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America aff002;  University of Padova, Padova, Italy aff003;  Liverpool School of Tropical Medicine, Liverpool, United Kingdom aff004
Vyšlo v časopise: Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. PLoS Genet 17(1): e1009321. doi:10.1371/journal.pgen.1009321
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1009321

Souhrn

Homing-based gene drives use a germline source of nuclease to copy themselves at specific target sites in a genome and bias their inheritance. Such gene drives can be designed to spread and deliberately suppress populations of malaria mosquitoes by impairing female fertility. However, strong unintended fitness costs of the drive and a propensity to generate resistant mutations can limit a gene drive’s potential to spread.

Alternative germline regulatory sequences in the drive element confer improved fecundity of carrier individuals and reduced propensity for target site resistance. This is explained by reduced rates of end-joining repair of DNA breaks from parentally deposited nuclease in the embryo, which can produce heritable mutations that reduce gene drive penetrance.

We tracked the generation and selection of resistant mutations over the course of a gene drive invasion of a population. Improved gene drives show faster invasion dynamics, increased suppressive effect and later onset of target site resistance. Our results show that regulation of nuclease expression is as important as the choice of target site when developing a robust homing-based gene drive for population suppression.

Klíčová slova:

Alleles – Eggs – Fecundity – Heterozygosity – Larvae – Mosquitoes – Mutation – Nucleases


Zdroje

1. Bhatt S., Weiss D.J., Cameron E., Bisanzio D., Mappin B., Dalrymple U., et al. 2015 The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526(7572), 207–211. doi: 10.1038/nature15535 26375008

2. World Health Organisation. 2017 Vector-borne diseases. (Geneva.

3. Burt A. 2003 Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci 270(1518), 921–928. doi: 10.1098/rspb.2002.2319 12803906

4. Esvelt K.M., Smidler A.L., Catteruccia F., Church G.M. 2014 Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3, e03401. doi: 10.7554/eLife.03401 25035423

5. Gantz V.M., Bier E. 2015 Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348(6233), 442–444. doi: 10.1126/science.aaa5945 25908821

6. Gantz V.M., Jasinskiene N., Tatarenkova O., Fazekas A., Macias V.M., Bier E., et al. 2015 Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A 112(49), E6736–6743. doi: 10.1073/pnas.1521077112 26598698

7. Hammond A., Galizi R., Kyrou K., Simoni A., Siniscalchi C., Katsanos D., et al. 2016 A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol 34(1), 78–83. doi: 10.1038/nbt.3439 26641531

8. Kyrou K., Hammond A.M., Galizi R., Kranjc N., Burt A., Beaghton A.K., et al. 2018 A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol 36(11), 1062–1066. doi: 10.1038/nbt.4245 30247490

9. Hammond A.M., Kyrou K., Bruttini M., North A., Galizi R., Karlsson X., et al. 2017 The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet 13(10), e1007039. doi: 10.1371/journal.pgen.1007039 28976972

10. Champer J., Reeves R., Oh S.Y., Liu C., Liu J., Clark A.G., et al. 2017 Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet 13(7), e1006796. doi: 10.1371/journal.pgen.1006796 28727785

11. Marshall J.M., Buchman A., Sanchez C.H., Akbari O.S. 2017 Overcoming evolved resistance to population-suppressing homing-based gene drives. Sci Rep 7(1), 3776. doi: 10.1038/s41598-017-02744-7 28630470

12. Champer S.E., Oh S.Y., Liu C., Wen Z., Clark A.G., Messer P.W., et al. 2020 Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. Sci Adv 6(10), eaaz0525. doi: 10.1126/sciadv.aaz0525 32181354

13. Champer J., Liu J., Oh S.Y., Reeves R., Luthra A., Oakes N., et al. 2018 Reducing resistance allele formation in CRISPR gene drive. Proceedings of the National Academy of Sciences 115(21), 5522–5527. doi: 10.1073/pnas.1720354115 29735716

14. Baker D.A., Nolan T., Fischer B., Pinder A., Crisanti A., Russell S. 2011 A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae. BMC Genomics 12, 296. doi: 10.1186/1471-2164-12-296 21649883

15. Tazuke S.I., Schulz C., Gilboa L., Fogarty M., Mahowald A.P., Guichet A., et al. 2002 A germline-specific gap junction protein required for survival of differentiating early germ cells. Development 129(10), 2529–2539. 11973283

16. Magnusson K., Mendes A.M., Windbichler N., Papathanos P.A., Nolan T., Dottorini T., et al. 2011 Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae. PLoS One 6(6), e21572. doi: 10.1371/journal.pone.0021572 21738713

17. Berleth T., Burri M., Thoma G., Bopp D., Richstein S., Frigerio G., et al. 1988 The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J 7(6), 1749–1756. 2901954

18. Schupbach T., Wieschaus E. 1986 Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev Biol 113(2), 443–448. doi: 10.1016/0012-1606(86)90179-x 3081391

19. Wang C., Lehmann R. 1991 Nanos is the localized posterior determinant in Drosophila. Cell 66(4), 637–647. doi: 10.1016/0092-8674(91)90110-k 1908748

20. Rangan P., DeGennaro M., Jaime-Bustamante K., Coux R.X., Martinho R.G., Lehmann R. 2009 Temporal and spatial control of germ-plasm RNAs. Curr Biol 19(1), 72–77. doi: 10.1016/j.cub.2008.11.066 19110432

21. Kandul N.P., Liu J., Buchman A., Gantz V.M., Bier E., Akbari O.S. 2020 Assessment of a Split Homing Based Gene Drive for Efficient Knockout of Multiple Genes. G3 (Bethesda) 10(2), 827–837. doi: 10.1534/g3.119.400985 31882406

22. Akbari O.S., Papathanos P.A., Sandler J.E., Kennedy K., Hay B.A. 2014 Identification of germline transcriptional regulatory elements in Aedes aegypti. Sci Rep 4, 3954. doi: 10.1038/srep03954 24492376

23. Li M., Yang T., Kandul N.P., Bui M., Gamez S., Raban R., et al. 2020 Development of a confinable gene drive system in the human disease vector Aedes aegypti. Elife 9. doi: 10.7554/eLife.51701 31960794

24. Adelman Z.N., Jasinskiene N., Onal S., Juhn J., Ashikyan A., Salampessy M., et al. 2007 nanos gene control DNA mediates developmentally regulated transposition in the yellow fever mosquito Aedes aegypti. Proc Natl Acad Sci U S A 104(24), 9970–9975. doi: 10.1073/pnas.0701515104 17548819

25. Macias V.M., Jimenez A.J., Burini-Kojin B., Pledger D., Jasinskiene N., Phong C.H., et al. 2017 nanos-Driven expression of piggyBac transposase induces mobilization of a synthetic autonomous transposon in the malaria vector mosquito, Anopheles stephensi. Insect Biochem Mol Biol 87, 81–89. doi: 10.1016/j.ibmb.2017.06.014 28676355

26. Meredith J.M., Underhill A., McArthur C.C., Eggleston P. 2013 Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase. PLoS One 8(3), e59264. doi: 10.1371/journal.pone.0059264 23516619

27. Hong C.C., Hashimoto C. 1995 An unusual mosaic protein with a protease domain, encoded by the nudel gene, is involved in defining embryonic dorsoventral polarity in Drosophila. Cell 82(5), 785–794. doi: 10.1016/0092-8674(95)90475-1 7671306

28. LeMosy E.K., Hashimoto C. 2000 The nudel protease of Drosophila is required for eggshell biogenesis in addition to embryonic patterning. Dev Biol 217(2), 352–361. doi: 10.1006/dbio.1999.9562 10625559

29. Galizi R., Hammond A., Kyrou K., Taxiarchi C., Bernardini F., O'Loughlin S.M., et al. 2016 A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci Rep 6, 31139. doi: 10.1038/srep31139 27484623

30. Champer J., Chung J., Lee Y.L., Liu C., Yang E., Wen Z., et al. 2019 Molecular safeguarding of CRISPR gene drive experiments. Elife 8. doi: 10.7554/eLife.41439 30666960

31. Guichard A., Haque T., Bobik M., Xu X.S., Klanseck C., Kushwah R.B.S., et al. 2019 Efficient allelic-drive in Drosophila. Nat Commun 10(1), 1640. doi: 10.1038/s41467-019-09694-w 30967548

32. KaramiNejadRanjbar M., Eckermann K.N., Ahmed H.M.M., Sanchez C.H., Dippel S., Marshall J.M., et al. 2018 Consequences of resistance evolution in a Cas9-based sex conversion-suppression gene drive for insect pest management. Proc Natl Acad Sci U S A 115(24), 6189–6194. doi: 10.1073/pnas.1713825115 29844184

33. Deredec A., Godfray H.C., Burt A. 2011 Requirements for effective malaria control with homing endonuclease genes. Proc Natl Acad Sci U S A 108(43), E874–880. doi: 10.1073/pnas.1110717108 21976487

34. Legros M., Lloyd A.L., Huang Y., Gould F. 2009 Density-dependent intraspecific competition in the larval stage of Aedes aegypti (Diptera: Culicidae): revisiting the current paradigm. J Med Entomol 46(3), 409–419. doi: 10.1603/033.046.0301 19496407

35. Beaghton A.K., Hammond A., Nolan T., Crisanti A., Burt A. 2019 Gene drive for population genetic control: non-functional resistance and parental effects. Proc Biol Sci 286(1914), 20191586. doi: 10.1098/rspb.2019.1586 31662083

36. Deredec A., Burt A., Godfray H.C. 2008 The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179(4), 2013–2026. doi: 10.1534/genetics.108.089037 18660532

37. Oberhofer G., Ivy T., Hay B.A. 2019 Cleave and Rescue, a novel selfish genetic element and general strategy for gene drive. Proc Natl Acad Sci U S A 116(13), 6250–6259. doi: 10.1073/pnas.1816928116 30760597

38. Champer J., Yang E., Lee E., Liu J., Clark A.G., Messer P.W. 2020 A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population. Proc Natl Acad Sci U S A 117(39), 24377–24383. doi: 10.1073/pnas.2004373117 32929034

39. Pham T.B., Phong C.H., Bennett J.B., Hwang K., Jasinskiene N., Parker K., et al. 2019 Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genet 15(12), e1008440. doi: 10.1371/journal.pgen.1008440 31856182

40. Giraldo-Calderon G.I., Emrich S.J., MacCallum R.M., Maslen G., Dialynas E., Topalis P., et al. 2015 VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res doi: 10.1093/nar/gku1117 25510499

41. Fuchs S., Nolan T., Crisanti A. 2013 Mosquito transgenic technologies to reduce Plasmodium transmission. Methods Mol Biol 923, 601–622. doi: 10.1007/978-1-62703-026-7_41 22990807

42. Pinello L., Canver M.C., Hoban M.D., Orkin S.H., Kohn D.B., Bauer D.E., et al. 2016 Analyzing CRISPR genome-editing experiments with CRISPResso. Nat Biotechnol 34(7), 695–697. doi: 10.1038/nbt.3583 27404874

43. Volohonsky G., Terenzi O., Soichot J., Naujoks D.A., Nolan T., Windbichler N., et al. 2015 Tools for Anopheles gambiae Transgenesis. G3 (Bethesda) 5(6), 1151–1163. doi: 10.1534/g3.115.016808 25869647


Článek vyšel v časopise

PLOS Genetics


2021 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Důležitost adherence při depresivním onemocnění
nový kurz
Autoři: MUDr. Eliška Bartečková, Ph.D.

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková, Ph.D.

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#