Extensive trimming of short single-stranded DNA oligonucleotides during replication-coupled gene editing in mammalian cells
Autoři:
Thomas W. van Ravesteyn aff001; Marcos Arranz Dols aff001; Wietske Pieters aff001; Marleen Dekker aff001; Hein te Riele aff001
Působiště autorů:
Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
aff001
Vyšlo v časopise:
Extensive trimming of short single-stranded DNA oligonucleotides during replication-coupled gene editing in mammalian cells. PLoS Genet 16(10): e32767. doi:10.1371/journal.pgen.1009041
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009041
Souhrn
Through transfection of short single-stranded oligodeoxyribonucleotides (ssODNs) small genomic alterations can be introduced into mammalian cells with high precision. ssODNs integrate into the genome during DNA replication, but the resulting heteroduplex is prone to detection by DNA mismatch repair (MMR), which prevents effective gene modification. We have previously demonstrated that the suppressive action of MMR can be avoided when the mismatching nucleotide in the ssODN is a locked nucleic acid (LNA). Here, we reveal that LNA-modified ssODNs (LMOs) are not integrated as intact entities in mammalian cells, but are severely truncated before and after target hybridization. We found that single additional (non-LNA-modified) mutations in the 5’-arm of LMOs influenced targeting efficiencies negatively and activated the MMR pathway. In contrast, additional mutations in the 3’-arm did not affect targeting efficiencies and were not subject to MMR. Even more strikingly, homology in the 3’-arm was largely dispensable for effective targeting, suggestive for extensive 3’-end trimming. We propose a refined model for LMO-directed gene modification in mammalian cells that includes LMO degradation.
Klíčová slova:
Cloning – Dideoxy DNA sequencing – DNA – DNA annealing – DNA replication – Mammalian genomics – Nucleotides – Transfection
Zdroje
1. Radecke S, Radecke F, Cathomen T, Schwarz K. Zinc-finger nuclease-induced gene repair with oligodeoxynucleotides: wanted and unwanted target locus modifications. Mol Ther. 2010 Apr;18(4):743–53. doi: 10.1038/mt.2009.304 20068556
2. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods. 2011 Sep;8(9):753–5. doi: 10.1038/nmeth.1653 21765410
3. González F, Zhu Z, Shi ZD, Lelli K, Verma N, Li Q V, et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. 2014 Jun;15(2):215–26. doi: 10.1016/j.stem.2014.05.018 24931489
4. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature. 2009;460(7257):894–8. doi: 10.1038/nature08187 19633652
5. Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Sterling B, Kraal L, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science. 2011 Jul 15;333(6040):348–53. doi: 10.1126/science.1205822 21764749
6. Wang HH, Kim H, Cong L, Jeong J, Bang D, Church GM. Genome-scale promoter engineering by coselection MAGE. Nat Methods. 2012;9(6):591–3. doi: 10.1038/nmeth.1971 22484848
7. DiCarlo JE, Conley AJ, Penttilä M, Jäntti J, Wang HH, Church GM. Yeast oligo-mediated genome engineering (YOGE). ACS Synth Biol. 2013 Dec 20;2(12):741–9. doi: 10.1021/sb400117c 24160921
8. Barbieri EM, Muir P, Akhuetie-Oni BO, Yellman CM, Isaacs FJ. Precise Editing at DNA Replication Forks Enables Multiplex Genome Engineering in Eukaryotes. Cell. 2017 Nov 30;171(6):1453–1467.e13. doi: 10.1016/j.cell.2017.10.034 29153834
9. Houlleberghs H, Dekker M, Lantermans H, Kleinendorst R, Dubbink HJ, Hofstra RMW, et al. Oligonucleotide-directed mutagenesis screen to identify pathogenic Lynch syndrome-associated MSH2 DNA mismatch repair gene variants. Proc Natl Acad Sci. 2016;201520813.
10. Houlleberghs H, Goverde A, Lusseveld J, Dekker M, Bruno MJ, Menko FH, et al. Suspected Lynch syndrome associated MSH6 variants: A functional assay to determine their pathogenicity. PLoS Genet. 2017 May;13(5):e1006765. doi: 10.1371/journal.pgen.1006765 28531214
11. Houlleberghs H, Dekker M, Lusseveld J, Pieters W, van Ravesteyn T, Verhoef S, et al. Three-step site-directed mutagenesis screen identifies pathogenic MLH1 variants associated with Lynch syndrome. J Med Genet. 2019 Nov 29;
12. Aarts M, te Riele H. Progress and prospects: oligonucleotide-directed gene modification in mouse embryonic stem cells: a route to therapeutic application. Gene Ther. 2011 Mar 16;18(3):213–9. doi: 10.1038/gt.2010.161 21160530
13. Li XT, Costantino N, Lu LY, Liu DP, Watt RM, Cheah KSE, et al. Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli. Nucleic Acids Res. 2003 Nov 15;31(22):6674–87. doi: 10.1093/nar/gkg844 14602928
14. Brachman EE, Kmiec EB. Gene repair in mammalian cells is stimulated by the elongation of S phase and transient stalling of replication forks. DNA Repair (Amst). 2005 Apr 4;4(4):445–57.
15. Olsen PA, Randol M, Krauss S. Implications of cell cycle progression on functional sequence correction by short single-stranded DNA oligonucleotides. Gene Ther. 2005 Mar;12(6):546–51. doi: 10.1038/sj.gt.3302454 15674399
16. Huen MSY, Li X, Lu L-Y, Watt RM, Liu D-P, Huang J-D. The involvement of replication in single stranded oligonucleotide-mediated gene repair. Nucleic Acids Res. 2006 Jan;34(21):6183–94. doi: 10.1093/nar/gkl852 17088285
17. Radecke S, Radecke F, Peter I, Schwarz K. Physical incorporation of a single-stranded oligodeoxynucleotide during targeted repair of a human chromosomal locus. J Gene Med. 2006 Feb;8(2):217–28. doi: 10.1002/jgm.828 16142817
18. Aarts M, te Riele H. Subtle gene modification in mouse ES cells: evidence for incorporation of unmodified oligonucleotides without induction of DNA damage. Nucleic Acids Res. 2010 Nov 5;38(20):6956–67. doi: 10.1093/nar/gkq589 20601408
19. Dekker M, Brouwers C, te Riele H. Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides. Nucleic Acids Res. 2003 Mar 15;31(6):e27. doi: 10.1093/nar/gng027 12626726
20. Costantino N, Court DL. Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15748–53. doi: 10.1073/pnas.2434959100 14673109
21. Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem. 2005 Jan;74:681–710. doi: 10.1146/annurev.biochem.74.082803.133243 15952900
22. van Ravesteyn TW, Dekker M, Fish A, Sixma TK, Wolters A, Dekker RJ, et al. LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4122–7. doi: 10.1073/pnas.1513315113 26951689
23. Aarts M, Dekker M, de Vries S, van der Wal A, te Riele H. Generation of a mouse mutant by oligonucleotide-mediated gene modification in ES cells. Nucleic Acids Res. 2006 Jan;34(21):e147. doi: 10.1093/nar/gkl896 17142234
24. de Piédoue G, Andrieu-Soler C, Concordet JP, Maurisse R, Sun J-S, Lopez B, et al. Targeted gene correction with 5’ acridine-oligonucleotide conjugates. Oligonucleotides. 2007 Jan;17(2):258–63. doi: 10.1089/oli.2007.0074 17638529
25. Andrieu-Soler C, Casas M, Faussat AM, Gandolphe C, Doat M, Tempé D, et al. Stable transmission of targeted gene modification using single-stranded oligonucleotides with flanking LNAs. Nucleic Acids Res. 2005 Jan;33(12):3733–42. doi: 10.1093/nar/gki686 16002788
26. Aarts M, te Riele H. Parameters of oligonucleotide-mediated gene modification in mouse ES cells. J Cell Mol Med. 2010 Jun;14(6B):1657–67. doi: 10.1111/j.1582-4934.2009.00847.x 19627401
27. Balakrishnan L, Bambara RA. Flap endonuclease 1. Annu Rev Biochem. 2013;82:119–38. doi: 10.1146/annurev-biochem-072511-122603 23451868
28. Mazur DJ, Perrino FW. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3’->5’ exonucleases. J Biol Chem. 1999;274(28):19655–60. doi: 10.1074/jbc.274.28.19655 10391904
29. Höss M, Robins P, Naven TJ, Pappin DJ, Sgouros J, Lindahl T. A human DNA editing enzyme homologous to the Escherichia coli DnaQ/MutD protein. EMBO J. 1999 Jul 1;18(13):3868–75. doi: 10.1093/emboj/18.13.3868 10393201
30. Shevelev I V, Hübscher U. The 3’ 5’ exonucleases. Nat Rev Mol Cell Biol. 2002;3(5):364–76. doi: 10.1038/nrm804 11988770
31. Hegele H, Wuepping M, Ref C, Kenner O, Kaufmann D. Simultaneous targeted exchange of two nucleotides by single-stranded oligonucleotides clusters within a region of about fourteen nucleotides. BMC Mol Biol. 2008 Jan 28;9:14. doi: 10.1186/1471-2199-9-14 18226192
32. Radding CM, Rosenzweig J, Richards F, Cassuto E. Seperation and characterization of exonuclease, β protein, and a complex of both. J Biol Chem. 1971;246(8):2510–2.
33. Muniyappa K, Radding CM. The homologous recombination system of phage lambda. Pairing activities of beta protein. J Biol Chem. 1986 Jun 5;261(16):7472–8. 2940241
34. Mythili E, Kumar KA, Muniyappa K. Characterization of the DNA-binding domain of beta protein, a component of phage lambda red-pathway, by UV catalyzed cross-linking. Gene. 1996 Dec 5;182(1–2):81–7. doi: 10.1016/s0378-1119(96)00518-5 8982071
35. Karakousis G, Ye N, Li Z, Chiu SK, Reddy G, Radding CM. The beta protein of phage lambda binds preferentially to an intermediate in DNA renaturation. J Mol Biol. 1998 Mar 6;276(4):721–31. doi: 10.1006/jmbi.1997.1573 9500924
36. Wang HH, Xu G, Vonner AJ, Church G. Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion. Nucleic Acids Res. 2011 Sep 1;39(16):7336–47. doi: 10.1093/nar/gkr183 21609953
37. Li X, Thomason LC, Sawitzke JA, Costantino N, Court DL. Bacterial DNA polymerases participate in oligonucleotide recombination. Mol Microbiol. 2013 Jun;88(5):906–20. doi: 10.1111/mmi.12231 23634873
38. Rodriguez GP, Song JB, Crouse GF. Transformation with oligonucleotides creating clustered changes in the yeast genome. PLoS One. 2012 Jan;7(8):e42905. doi: 10.1371/journal.pone.0042905 22916177
39. Dehé P-M, Gaillard P-HL. Control of structure-specific endonucleases to maintain genome stability. Nat Rev Mol Cell Biol. 2017;18(5):315–30. doi: 10.1038/nrm.2016.177 28327556
40. Mosberg JA, Gregg CJ, Lajoie MJ, Wang HH, Church GM. Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases. PLoS One. 2012 Jan;7(9):e44638. doi: 10.1371/journal.pone.0044638 22957093
41. Sawitzke JA, Costantino N, Li X-T, Thomason LC, Bubunenko M, Court C, et al. Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J Mol Biol. 2011 Mar 18;407(1):45–59. doi: 10.1016/j.jmb.2011.01.030 21256136
42. Harmsen T, Klaasen S, van de Vrugt H, Te Riele H. DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break. Nucleic Acids Res. 2018 Apr 6;46(6):2945–55. doi: 10.1093/nar/gky076 29447381
43. Mattiazzi Usaj M, Styles EB, Verster AJ, Friesen H, Boone C, Andrews BJ. High-Content Screening for Quantitative Cell Biology. Trends Cell Biol. 2016;26(8):598–611. doi: 10.1016/j.tcb.2016.03.008 27118708
44. Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet. 2019;1.
45. Papaioannou I, Disterer P, Owen JS. Use of internally nuclease-protected single-strand DNA oligonucleotides and silencing of the mismatch repair protein, MSH2, enhances the replication of corrected cells following gene editing. J Gene Med. 2009 Mar;11(3):267–74. doi: 10.1002/jgm.1296 19153972
46. Rios X, Briggs AW, Chistodoulou D, Gorham JM, Seidman JG, Church GM. Stable gene targeting in human cells using single-strand oligonucleotides with modified bases. PLoS One. 2012 Jan;7(5):e36697. doi: 10.1371/journal.pone.0036697 22615794
47. Aarts M, Dekker M, Dekker R, de Vries S, van der Wal A, Wielders E, et al. Gene modification in embryonic stem cells by single-stranded DNA oligonucleotides. Wurst W, Kühn R, editors. Methods Mol Biol. 2009 Jan;530:79–99. doi: 10.1007/978-1-59745-471-1_5 19266328
48. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. doi: 10.1126/science.1231143 23287718
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 10
- Antibiotika na nachlazení nezabírají! Jak můžeme zpomalit šíření rezistence?
- FDA varuje před selfmonitoringem cukru pomocí chytrých hodinek. Jak je to v Česku?
- Prof. Jan Škrha: Metformin je bezpečný, ale je třeba jej bezpečně užívat a léčbu kontrolovat
- Ibuprofen jako alternativa antibiotik při léčbě infekcí močových cest
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
Nejčtenější v tomto čísle
- Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies
- RNA-directed DNA Methylation
- The DNA methylome of human sperm is distinct from blood with little evidence for tissue-consistent obesity associations
- Correction: Molecular predictors of brain metastasis-related microRNAs in lung adenocarcinoma