#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Metabolický syndrom – dysregulace endokrinních funkcí tukové tkáně


Autoři: Kateřina Horská;  Jana Kučerová;  Pavel Suchý;  Hana Kotolová
Působiště autorů: Ústav humánní farmakologie a toxikologie FaF, Veterinární a Farmaceutická Univerzita, Brno, ČR
Vyšlo v časopise: Čes. slov. Farm., 2014; 63, 152-159
Kategorie: Přehledy a odborná sdělení

Souhrn

Metabolický syndrom, který výrazně zvyšuje kardiovaskulární morbiditu, mortalitu ariziko rozvoje diabetes mellitus 2. typu, vsoučasné době dosahuje epidemických proporcí. Tato komplexní porucha vyžaduje urgentní vývoj nových farmakoterapeutických řešení. Patofyziologické mechanismy vedoucí k rozvoji tohoto syndromu nejsou dosud plně objasněny, nicméně se zdá zřejmé, že k jeho rozvoji přispívá řada metabolických dysregulací. Za potenciálně slibný cíl pro vývoj nových léčiv se považuje dysregulace endokrinních aparakrinních funkcí tukové tkáně. Specifické adipokiny, což jsou proteiny secernované tukovou tkání s jistými pleiotropními účinky, jsou silně asociovány s regulací energetického metabolismu, chuti k jídlu, inzulinové signální dráhy, senzitivity periferních tkání k inzulinu aprozánětlivému stavu spojenému smetabolickým syndromem. Cílem této práce je poskytnout stručný přehled endokrinních aparakrinních funkcí tukové tkáně ve spojitosti s rozvojem metabolického syndromu, jeho patofyziologických podkladů apoukázat na některé adipokiny jako potenciální cíle pro vývoj nových farmakoterapeutických přístupů.

Klíčová slova:
metabolický syndrominsulinová rezistencetuková tkáňadipokiny


Zdroje

1. Reaven G. M. Syndrome X. Blood Press Suppl. 1992; 4, 13–16.

2. Kaplan N. M. The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch. Intern. Med. 1989; 149, 1514–1520.

3. Mani A., Radhakrishnan J., Wang H., Mani A., Mani M. A., Nelson-Williams C., Carew K. S., Mane S., Najmabadi H., Wu D., Lifton R. P. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 2007; 315, 1278–1282.

4. Reaven G. M., Lithell H., Landsberg L. Hypertension and associated metabolic abnormalities-the role of insulin resistance and the sympathoadrenal system. N. Engl. J. Med. 1996; 334, 374–381.

5. Aykan A. C., Gul I., Kalaycioglu E., Gokdeniz T., Hatem E., Mentese U., Sahin Yildiz B., Yildiz M. Is metabolic syndrome related with coronary artery disease severity and complexity: An observational study about IDF and AHA/NHLBI metabolic syndrome definitions? Cardiol. J. 2013; 62.18_S2: C196–C197.

6. Alberti K. G., Eckel R. H., Grundy S. M., Zimmet P. Z., Cleeman J. I., Donato K. A., Fruchart J. C., James W. P., Loria C. M., Smith S. C., Jr. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120, 1640–1645.

7. Chen S., Chen Y., Liu X., Li M., Wu B., Li Y., Liang Y., Shao X., Holthofer H., Zou H. Insulin resistance and metabolic syndrome in normal-weight individuals. Endocrine 2013; 1–9.

8. Ruderman N. B., Carling D., Prentki M., Cacicedo J. M. AMPK, insulin resistance, and the metabolic syndrome. J. Clin. Invest. 2013; 123, 2764–2772.

9. Stettler N., Murphy M. M., Barraj L. M., Smith K. M., Ahima R. S. Systematic review of clinical studies related to pork intake and metabolic syndrome or its components. Diabetes Metab. Syndr. Obes. 2013; 6, 347–357.

10. Eckel R. H. Mechanisms of the components of the metabolic syndrome that predispose to diabetes and atherosclerotic CVD. Proc. Nutr. Soc. 2007; 66, 82–95.

11. Alemany M. Relationship between energy dense diets and white adipose tissue inflammation in metabolic syndrome. Nutr. Res. 2013; 33, 1–11.

12. Tracy R. P. Inflammation, the metabolic syndrome and cardiovascular risk. Int. J. Clin. Pract. Suppl. 2003; 10–17.

13. Xu H., Barnes G. T., Yang Q., Tan G., Yang D., Chou C. J., Sole J., Nichols A., Ross J. S., Tartaglia L. A., Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 2003; 112, 1821–1830.

14. Hotamisligil G. S., Shargill N. S., Spiegelman B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259, 87–91.

15. Athyros V. G., Tziomalos K., Karagiannis A., Anagnostis P., Mikhailidis D. P. Should adipokines be considered in the choice of the treatment of obesity-related health problems? Curr. Drug Targets 2010; 11, 122–135.

16. Haas B., Schlinkert P., Mayer P., Eckstein N. Targeting adipose tissue. Diabetol. Metab. Syndr. 2012; 4, 43.

17. Galic S., Oakhil, J. S., Steinberg G. R. Adipose tissue as an endocrine organ. Mol. Cell Endocrinol. 2010; 316, 129–139.

18. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J. M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372, 425–432.

19. Houseknecht K. L., Portocarrero C. P. Leptin and its receptors: regulators of whole-body energy homeostasis. Domest. Anim. Endocrinol. 1998; 15, 457–475.

20. Chen H., Charlat O., Tartaglia L. A., Woolf E. A., Weng X., Ellis S. J., Lakey N. D., Culpepper J., Moore K. J., Breitbart R. E., Duyk G. M., Tepper R. I., Morgenstern J. P. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996; 84, 491–495.

21. Margetic S., Gazzola C., Pegg G. G., Hill R. A. Leptin: a review of its peripheral actions and interactions. Int. J. Obes. Relat. Metab. Disord. 2002; 26, 1407–1433.

22. Ahima R. S. Revisiting leptin’s role in obesity and weight loss. J. Clin. Invest. 2008; 118, 2380–2383.

23. Tartaglia L. A., Dembski M., Weng X., Deng N., Culpepper J., Devos R., Richards G. J., Campfield L. A., Clark F. T., Deeds J., Muir C., Sanker S., Moriarty A., Moore K. J., Smutko J. S., Mays G. G., Wool E. A., Monroe C. A., Tepper R. I. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995; 83, 1263–1271.

24. Baskin D. G., Figlewicz Lattemann D., Seeley R. J., Woods S. C., Porte D., Jr., Schwartz M. W. Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Res. 1999; 848, 114–123.

25. Rabe K., Lehrke M., Parhofer K. G., Broedl U. C. Adipokines and insulin resistance. Mol. Med. 2008; 14, 741–751.

26. Bjorbaek C. Central leptin receptor action and resistance in obesity. J. Investig. Med. 2009; 57, 789–794.

27. Maeda K., Okubo K., Shimomura I., Funahashi T., Matsuzawa Y., Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 1996; 221, 286–289.

28. Kadowaki T., Yamauchi T. Adiponectin and adiponectin receptors. Endocr. Rev. 2005; 26, 439–451.

29. Bjursell M., Ahnmark A., Bohlooly Y. M., William-Olsson L., Rhedin M., Peng X. R., Ploj K., Gerdin A. K., Arnerup G., Elmgren A., Berg A. L., Oscarsson J., Linden D. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes 2007; 56, 583–593.

30. Kershaw E. E., Flier J. S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004; 89, 2548–2456.

31. Hara K., Boutin P., Mori Y., Tobe K., Dina C., Yasuda K., Yamauchi T., Otabe S., Okada T., Eto K., Kadowaki H., Hagura R., Akanuma Y., Yazaki Y., Nagai R., Taniyama M., Matsubara K., Yoda M., Nakano Y., Tomita M., Kimura S., Ito C., Froguel P., Kadowaki T. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 2002; 51, 536–540.

32. Ryo M., Nakamura T., Kihara S., Kumada M., Shibazaki S., Takahashi M., Nagai M., Matsuzawa Y., Funahashi T. Adiponectin as a biomarker of the metabolic syndrome. Circ. J. 2004; 68, 975–981.

33. Kizer J. R. A tangled threesome: adiponectin, insulin sensitivity, and adiposity: can Mendelian randomization sort out causality? Diabetes 2013; 62, 1007–1009.

34. Kubota N., Yano W., Kubota T., Yamauchi T., Itoh S., Kumagai H., Kozono H., Takamoto I., Okamoto S., Shiuchi T., Suzuki R., Satoh H., Tsuchida A., Moroi M., Sugi K., Noda T., Ebinuma H., Ueta Y., Kondo T., Araki E., Ezaki O., Nagai R., Tobe K., Terauchi Y., Uek K., Minokoshi Y., Kadowaki T. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 2007; 6, 55–68.

35. Tsao T. S., Lodish H. F., Fruebis J. ACRP30, a new hormone controlling fat and glucose metabolism. Eur. J. Pharmacol. 2002; 440, 213–221.

36. Berndt J., Kloting N., Kralisch S., Kovacs P., Fasshauer M., Schon M. R., Stumvoll M., Bluher M. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes 2005; 54, 2911–2916.

37. Samal B., Sun Y., Stearns G., Xie C., Suggs S., Mcniece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell Biol. 1994; 14, 1431–1437.

38. Chen M. P., Chung F. M., Chang D. M., Tsai J. C., Huang H. F., Shin S. J., Lee Y. J. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2006; 91, 295–299.

39. Adeghate E. Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr. Med. Chem. 2008; 15, 1851–1862.

40. Yang R. Z., Lee M. J., Hu H., Pray J., Wu H. B., Hansen B. C., Shuldiner A. R., Fried S. K., Mclenithan J. C., Gong D. W. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab. 2006; 290, E1253–1261.

41. Brunetti L., Di Nisio C., Recinella L., Chiavaroli A., Leone S., Ferrante C., Orlando G., Vacca M. Effects of vaspin, chemerin and omentin-1 on feeding behavior and hypothalamic peptide gene expression in the rat. Peptides 2011; 32, 1866–1871.

42. Tan B. K., Adya R., Farhatullah S., Lewandowski K. C., O’Hare P., Lehnert H., Randeva H. S. Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome: ex vivo and in vivo regulation of omentin-1 by insulin and glucose. Diabetes 2008; 57, 801–808.

43. Brunetti L., Orlando G., Ferrante C., Recinella L., Leone S., Chiavaroli A., Di Nisio C., Shohreh R., Manippa F., Ricciuti A., Vacca M. Orexigenic effects of omentin-1 related to decreased CART and CRH gene expression and increased norepinephrine synthesis and release in the hypothalamus. Peptides 2013; 44, 66–74.

44. Kloting N., Berndt J., Kralisch S., Kovacs P., Fasshauer M., Schon M. R., Stumvoll M., Bluher M. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem. Biophys. Res. Commun. 2006; 339, 430–436.

45. Ye Y., Hou X. H., Pan X. P., Lu J. X., Jia W. P. Serum vaspin level in relation to postprandial plasma glucose concentration in subjects with diabetes. Chin. Med. J. (Engl). 2009; 122, 2530–2533.

46. Bluher M. Vaspin in obesity and diabetes: pathophysiological and clinical significance. Endocrine 2012; 41, 176–182.

47. Jeong E., Youn B. S., Kim D. W., Kim E. H., Park J. W., Namkoong C., Jeong J. Y., Yoon S. Y., Park J. Y., Lee K. U., Kim M. S. Circadian rhythm of serum vaspin in healthy male volunteers: relation to meals. J. Clin. Endocrinol. Metab. 2010; 95, 1869–1875.

48. Handisurya A., Riedl M., Vila G., Maier C., Clodi M., Prikoszovich T., Ludvik B., Prager G., Luger A., Kautzky- -Willer A. Serum vaspin concentrations in relation to insulin sensitivity following RYGB-induced weight loss. Obes. Surg. 2010; 20, 198–203.

49. Steppan C. M., Bailey S. T., Bhat S., Brown E. J., Banerjee R. R., Wright C. M., Patel H. R., Ahima R. S., Lazar M. A. The hormone resistin links obesity to diabetes. Nature 2001; 409, 307–312.

50. Wang H., Chu W. S., Hemphill C., Elbein S. C. Human resistin gene: molecular scanning and evaluation of association with insulin sensitivity and type 2 diabetes in Caucasians. J. Clin. Endocrinol. Metab. 2002; 87, 2520–2524.

51. Barnes K. M., Miner J. L. Role of resistin in insulin sensitivity in rodents and humans. Curr. Protein. Pept. Sci. 2009; 10, 96–107.

52. Steppan C. M., Lazar M. A. Resistin and obesity-associated insulin resistance. Trends Endocrinol. Metab. 2002; 13, 18–23.

53. Kosari S., Rathner J. A., Badoer E. Central resistin enhances renal sympathetic nerve activity via phosphatidylinositol 3-kinase but reduces the activity to brown adipose tissue via extracellular signal-regulated kinase 1/2. J. Neuroendocrinol. 2012; 24, 1432–1439.

54. Rodriguez-Pacheco F., Novelle M. G., Vazquez M. J., Garcia-Escobar E., Soriguer F., Rojo-Martinez G., Garcia-Fuentes E., Malagon M. M., Dieguez, C. Resistin regulates pituitary lipid metabolism and inflammation in vivo and in vitro. Mediators Inflamm. 2013; Article 479739. http://www.hindawi. com/journals/mi/2013/479739/abs/.

55. Nagaev I., Bokarewa M., Tarkowski A., Smith U. Human resistin is a systemic immune-derived proinflammatory cytokine targeting both leukocytes and adipocytes. PLoS One 2006; 1, e31. http://www.plosone.org.

56. Kaser S., Kaser A., Sandhofer A., Ebenbichler C. F., Tilg H., Patsch J. R. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem. Biophys. Res. Commun. 2003; 309, 286–290.

57. Bokarewa M., Nagaev I., Dahlberg L., Smith U., Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J. Immunol. 2005; 174, 5789–5795.

58. Savage D. B., Sewter C. P., Klenk E. S., Segal D. G., Vidal-Puig A., Considine R. V.,, O’Rahilly S. Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes 2001; 50, 2199–2202.

59. Patel L., Buckels A. C., Kinghorn I. J., Murdock P. R., Holbrook J. D., Plumpton C., Macphee C. H., Smith S. A. Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem. Biophys. Res. Commun. 2003; 300, 472–476.

60. Fujinami A, Obayashi H, Ohta K, Ichimura T, Nishimura M, Matsui H., Kawahara Y., Yamazaki Y., Ogata M., Hasegawa G., Nakamura N., Yoshikawa T., Nakano K., Ohta M. Enzyme-linked immunosorbent assay for circulating human resistin: Resistin concentrations in normal subjects and patients with type 2 diabetes. Clin. Chim. Acta. 2004; 339, 57–63.

61. Lee J. H., Chan J. L, Yiannakouris N, Kontogianni M, Estrada E, Seip R., Orlova C., Mantzoros C. S. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: Cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J. Clin. Endocrinol. Metab. 2003; 88, 4848–4856.

62. Azuma K., Katsukawa F., Oguchi S., Murata M., Yamazaki H., Shimada, A., Saruta, T. Correlation between serum resistin level and adiposity in obese individuals. Obes. Res. 2003; 11, 997–1001.

63. Silha J. V., Krsek M, Skrha J. V., Sucharda P, Nyomba B. L., Murphy, L. J. Plasma resistin, adiponectin and leptin levels in lean and obese subjects: Correlations with insulin resistance. Eur. J. Endocrinol. 2003; 149, 331–335.

64. Baar R. A., Dingfelder C. S., Smith L. A., Bernlohr D. A., Wu C., Lange A. J., Parks E. J. Investigation of in vivo fatty acid metabolism in AFABP/aP2(-/-) mice. Am. J. Physiol. Endocrinol. Metab. 2005; 288, E187–193.

65. Xu A., Tso A. W., Cheung B. M., Wang Y., Wat N. M., Fong C. H., Yeung D. C., Janus E. D., Sham P. C., Lam K. S. Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study. Circulation 2007; 115, 1537–1543.

66. Haider D. G., Schindler K., Bohdjalian A., Prager G., Luger A., Wolzt M., Ludvik B. Plasma adipocyte and epidermal fatty acid binding protein is reduced after weight loss in obesity. Diabetes Obes. Metab. 2007; 9, 761–763.

67. Simon I., Escote X., Vilarrasa N., Gomez J., Fernandez-Real J. M., Megia A., Gutierrez C., Gallart L., Masdevall C., Vendrell J. Adipocyte fatty acid-binding protein as a determinant of insulin sensitivity in morbid-obese women. Obesity 2009; 17, 1124–1128.

68. Stejskal D., Karpisek M. Adipocyte fatty acid binding protein in a Caucasian population: a new marker of metabolic syndrome? Eur. J. Clin. Invest. 2006; 36, 621–625.

69. Bronsky J., Karpisek M., Bronska E., Pechova M., Jancikova B., Kotolova H., Stejskal D., Prusa R., Nevoral J. Adiponectin, adipocyte fatty acid binding protein, and epidermal fatty acid binding protein: proteins newly identified in human breast milk. Clin. Chem. 2006; 52, 1763–1770.

70. Karpisek M., Stejskal D., Kotolova H., Kollar P., Janoutova G., Ochmanova R., Cizek L., Horakova, D., Yahia R. B., Lichnovska R., Janout V. Treatment with atorvastatin reduces serum adipocyte-fatty acid binding protein value in patients with hyperlipidaemia. Eur. J. Clin. Invest. 2007; 37, 637–642.

71. Maeda N., Shimomura I., Kishida K., Nishizawa H., Matsuda M., Nagaretani H., Furuyama N., Kondo H., Takahashi M., Arita Y., Komuro R., Ouchi N., Kihara S., Tochino Y., Okutomi K., Horie M., Takeda S., Aoyama T., Funahashi T., Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 2002; 8, 731–737.

72. Mooney R. A. Counterpoint: Interleukin-6 does not have a beneficial role in insulin sensitivity and glucose homeostasis. J. Appl. Physiol. 2007; 102, 816–868.

73. Sparks J. D., Cianci J., Jokinen J., Chen L. S., Sparks C. E. Interleukin-6 mediates hepatic hypersecretion of apolipoprotein B. Am. J. Physiol. Gastrointest Liver. Physiol. 2010; 299, G980–989.

74. Bruun J. M., Lihn A. S., Verdich C., Pedersen S. B., Toubro S., Astrup A., Richelsen B. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am. J. Physiol. Endocrinol. Metab. 2003; 285, E527–533.

75. Trujillo M. E., Sullivan S., Harten I., Schneider S. H., Greenberg A. S., Fried S. K. Interleukin-6 regulates human adipose tissue lipid metabolism and leptin production in vitro. J. Clin. Endocrinol. Metab. 2004; 89, 5577–5582.

76. Richter E. A., Garetto L. P., Goodman M. N., Ruderman N. B. Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin. J. Clin. Invest. 1982; 69, 785–793.

77. Al-Khalili L., Bouzakri K., Glund S., Lonnqvist F., Koistinen H. A., Krook A. Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol. Endocrinol. 2006; 20, 3364–3375.

78. Glund S., Deshmukh A., Long Y. C., Moller T., Koistinen H. A., Caidahl K., Zierath J. R., Krook A. Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes 2007; 56, 1630–1637.

79. Jager J., Gremeaux T., Cormont M., Le Marchand-Brustel Y., Tanti J. F. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 2007; 148, 241–251.

80. Lagathu C., Yvan-Charvet L., Bastard J. P., Maachi M., Quignard-Boulange A., Capeau J., Caron M. Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes. Diabetologia 2006; 49, 2162–2173.

81. Tchernof A., Després J. Pathophysiology of human visceral obesity: an update. Physiological reviews 2013; 93.1, 359–404.

82. Ibrahim M. Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity reviews 2010; 11, 11–18.

83. Chou K., Perry, C. M. Metreleptin: first global approval. Drugs 2013; 73/9, 989–997.

84. FDA. http://www.fda.gov/newsevents/newsroom/pressannounce ments/ucm387060.htm.

85. Fiaschi T., Magherini F., Gamberi T., Modesti P. A., Modesti, A. Adiponectin as a tissue regenerating hormone: more than a metabolic function. Cellular and Molecular Life Sciences 2014; 71.10, 1917–1925.

86. Kakafika A. I., Mikhailidis D. P., Karagiannis A., Athyros V. G. The role of endocannabinoid system blockade in the treatment of the metabolic syndrome. J. Clin. Pharmacol. 2007; 47, 642–652.

87. Perkins J. M., Davis S. N. Endocannabinoid system overactivity and the metabolic syndrome: prospects for treatment. Curr. Diab. Rep. 2008; 8, 12–19.

88. Vemuri V. K., Janero D. R., Makriyannis A. Pharmacotherapeutic targeting of the endocannabinoid signaling system: drugs for obesity and the metabolic syndrome. Physiol. Behav. 2008; 93, 671–686.

89. De Luis D. A., Gonzalez Sagrado M., Aller R., Izaola O., Conde R. Relation of G1359A polymorphism of the cannabinoid receptor (CB1) gene with metabolic syndrome by ATP III classification. Diabetes Metab. Res. Rev. 2011; 27, 506–511.

90. Merroun I., Sanchez-Gonzalez C., Martinez R., Lopez-Chaves C., Porres J. M., Aranda P., Llopis J., Galisteo M., Zarzuelo A., Errami M., Lopez-Jurado M. Novel effects of the cannabinoid inverse agonist AM 251 on parameters related to metabolic syndrome in obese Zucker rats. Metabolism 2013; 62, 1641–1650.

91. Slavic S., Lauer D., Sommerfeld M., Kemnitz U. R., Grzesiak A., Trappiel M., Thone-Reineke C., Baulmann J., Paulis L., Kappert K., Kintscher U., Unger T., Kaschina E. Cannabinoid receptor 1 inhibition improves cardiac function and remodelling after myocardial infarction and in experimental metabolic syndrome. J. Mol. Med. (Berl.). 2013; 91, 811–823.

92. Chartoumpekis D. V., Kensler T. W. New player on an old field; the keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome. Curr. Diabetes Rev. 2013; 9, 137–145.

93. Sahebkar A. Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? Biofactors 2013; 39, 197–208.

94. Anagnostis P., Katsiki N., Adamidou F., Athyros V. G., Karagiannis A., Kita M., Mikhailidis D. P. 11beta-Hydroxysteroid dehydrogenase type 1 inhibitors: novel agents for the treatment of metabolic syndrome and obesity-related disorders? Metabolism 2013; 62, 21–33.

95. Ricci-Cabello I., Herrera M. O., Artacho R. Possible role of milk-derived bioactive peptides in the treatment and prevention of metabolic syndrome. Nutr. Rev. 2012; 70, 241–155.

Štítky
Farmacie Farmakologie

Článek vyšel v časopise

Česká a slovenská farmacie

Číslo 4

2014 Číslo 4
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#