#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Possibilities of influencing the drug content and encapsulation efficiency of chitosan microspheres prepared by ionic gelation process


Authors: Jan Kouřil;  Jakub Vysloužil;  Martina Kejdušová;  Kateřina Dvořáčková;  David Vetchý
Published in the journal: Čes. slov. Farm., 2014; 63, 75-83
Category: Původní práce

Summary

This study aimed to prepare high molecular weight chitosan blank and drug-loaded microparticles using 5-aminosalicylic acid (5-ASA) as the model active substance by an external ionic gelation. Formulation and process variables included the chitosan concentration and presence of drug in the polymer solution, and/or in hardening solution during the microparticles preparation. The effect of different preparation conditions on the properties of the microparticles was observed with a view to increase drug content in microparticles. For both types of microparticles (with and without the drug), it was found that their sphericity and equivalent diameter increased with increasing chitosan concentration. The drug content of drug-loaded microparticles was the highest in the case of the sample prepared from 1.75% chitosan dispersion, when the drug was present both in the chitosan dispersion and the hardening solution. Maximum six times higher drug content was achieved by change of the placement of 5-ASA during preparation (1.25% chitosan concentration).

Keywords:
microparticles • external ionotropic gelation • chitosan • 5-ASA • encapsulation efficiency


Zdroje

1. Vetchý D., Ceral J. Moderní perorální lékové formy používané v neurologii. Neurol. Prax. 2005; 6(4), 211–212.

2. Madhav N. V. S., Kala S. Review on microparticulate drug delivery system. Int. J. PharmTech Res. 2011; 3(5), 1242–1254.

3. Bajerová M., Dvořáčková K., Gajdziok J., Masteiková R., Rabišková M. Metody přípravy mikročástic ve farmaceutické technologii. Čes. slov. Farm. 2009; 58(5/6), 191–199.

4. Rabišková M. Částicové lékové formy. Prakt. Lékáren. 2005; 1, 29–30.

5. Sahil K., Akanksha M., Premjeet S., Bilandi A., Kapoor B. Microsphere: A review. IJRPC. 2011; 1(4), 1184–1198.

6. Alagusundaram M., Madhu Sudana Chetty C., Umashankari K., Badarinath A. V., Lavanya C., Ramkanth S. Microspheres as a novel drug delivery system – A review. Int. J. ChemTech Res. 2009; 1(3), 526–534.

7. Reis C. P., Neufeld R. J., Vilela S., Ribeiro A. J., Veiga F. Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. J. Microencapsul. 2006; 23(3), 245–257.

8. Patil P., Chavanke D., Wagh M. A review on ionotropic gelation method: Novel approach for controlled gastroretentive gelispheres. Int. J. Pharm. Pharm. Sci. 2012; 4(4), 27–32.

9. Das M. K., Senapati P. C. Furosemide-loaded alginate microspheres prepared by ionic cross-linking technique: Morphology and release characteristics. Indian J. Pharm. Sci. 2008; 70(1), 77–84.

10. Lee J. E., Park J. C., Kim J. G., Suh H. Preparation of collagen modified hyaluronan microparticles as antibiotics carrier. Yonsei Med. J. 2001; 42(3), 291–298.

11. Vedha Hari B. N., Praneetha T., Prathyusha T., Mounika K., Ramya Devi D. Development of starch-gelatin complex microspheres as sustained release delivery system. J. Adv. Pharm. Technol. Res. 2012; 3(3), 182–187.

12. Shaik A. A., Shaik U. K., Praneetha P. Preparation and in vitro evaluation of chitosan-carrageenan, chitosan-alginate beads for controlled release of nateglinide. Der Pharmacia Sinica 2011; 2(2), 375–384.

13. Rowe R. C., Sheskey P. J., Owen S. C. Handbook of pharmaceutical excipients: edited by Raymond C. Rowe, Paul J. Sheskey, Siân C. Owen. 5th ed. Washington, DC: American Pharmacists Association, 2006; xxi, 918 s. 

14. Tahtat D., Mahlous M., Benamer S., Khodja A. N., Youcef S. L. Effect of molecular weight on radiation chemical degradation yield of chain scission of γ-irradiated chitosan in solid state and in aqueous solution. Radiat. Phys. Chem. 2012; 81(6), 659–665.

15. Taranejoo S., Janmaleki M., Rafienia M., Kamali M., Mansouri M. Chitosan microparticles loaded with exotoxin A subunit antigen for intranasal vaccination against Pseudomonas aeruginosa: An in vitro study. Carbohydr. Polym. 2011; 83(4), 1854–1861.

16. Pichayakorn W., Boonme P. Evaluation of cross-linked chitosan microparticles containing metronidazole for periodontitis treatment. Mater. Sci. Eng. C. Mater. Biol. Appl. 2013; 33(3), 1197–1202.

17. Harris R., Lecumberri E., Heras A. Chitosan-Genipin Microspheres for the Controlled Release of Drugs: Clarithromycin, Tramadol and Heparin. Mar. Drugs 2010; 8, 1750–1762.

18. Saha P., Goyal A. K., Rath G. Formulation and Evaluation of Chitosan-Based Ampicillin Trihydrate Nanoparticles. Trop. J. Pharm. Res. 2010; 9(5), 483–488.

19. Wang Y.-CH., Chung T.-H., Chung T.-W. The Effects of Characteristics of Chitosan on the Heparin Loaded Chitosan Microspheres. J. Med. Biol. Eng. 2001; 21(4), 225–232.

20. Dounighi M. N., Eskandari R., Avadi M. R., Zolfagharian H., Sadeghi M. M. A., Rezayat M. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J. Venom. Anim. Toxins incl. Trop. Dis. 2012; 18(1), 44–52.

21. Sriamornsak P. Effect of calcium concentration, hardening agent and drying condition on release characteristics of oral proteins from calcium pectinate gel beads. Eur. J. Pharm. Sci. 1999; 8(3), 221–227.

22. Ravikumara N. R., Madhusudhan B. Chitosan nanoparticles for tamoxifen delivery and cytotoxicity to MCF-7 and Vero cells. Pure Appl. Chem. 2011; 83(11), 2027–2040.

23. Xu Y., Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int. J. Pharm. 2003; 250(1), 215–226.

24. Pulavendran S., Rose CH., Mandal A. Hepatocyte growth factor incorporated chitosan nanoparticles augment the differentiation of stem cell into hepatocytes for the recovery of liver cirrhosis in mice. J. Nanobiotechnology. 2011; 9(1), 1–11.

25. Shrivastava V., Jain U. K. Design of single dose control release device for antigen delivery based on Poly (Lactic -Co- Glycolic acid). IJPSN 2010; 3(3), 1075–1084.

26. Kumar S. S., Saha A. K., Kavitha K., Basua S. K. Evaluation of clobazam loaded ionically cross-linked microspheres using chitosan. Der Pharmacia Sinica. 2012; 6(3), 616–623.

27. 5-Aminosalicylic acid. Santa Cruz Biotech [online] [cit. 2013-08-18]. Dostupné z: http://www.scbt.com/datasheet-202890-5-aminosalicylic-acid.html

28. Smrdel P., Bogataj M., Mrhar A. The influence of selected parameters on the size and shape of alginate beads prepared by ionotropic gelation. Sci. Pharm. 2008; 76(1), 77–89.

29. Sari R., Rijal M., Sari D. M., Ruliyana I. D. Physical characterization and in vitro release study on theophylline-chitosan microparticles (effect on crosslinking time and method of preparation). PharmaScientia. 2012; 1(1), 16–22.

30. Cheng G., An F., Zou M.-J., Sun J., Hao X. H., He Y. X. Time- and pH-dependent colon-specific drug delivery for orally administered diclofenac sodium and 5-aminosalicylic acid. World J. Gastroenterol. 2004; 10(12), 1769–1774.

31. El-Hefian E. A., Elgannoudi E. S., Mainal A., Yahaya A. H. Characterization of chitosan in acetic acid: rheological and thermal studies. Turk. J. Chem. 2010; 34(1), 47–56.

32. Mura C., Nachér A., Merino V., Merino-Sanjuán M., Manconi M., Loy G., Fadda A. M., Díez-Sales O. Design, characterization and in vitro evaluation of 5-aminosalicylic acid loaded N-succinyl-chitosan microparticles for colon specific delivery. Colloids Surf. B. Biointerfaces. 2012; 94(1), 199–205.

33. Mladenovska K., Cruaud O., Richomme P., Belamie E., Raicki R. S., Venier-Julienne M. C., Popovski E., Benoit J. P., Goracinova K. 5-ASA loaded chitosan-Ca-alginate microparticles: Preparation and physicochemical characterization. Int. J. Pharm. 2007; 345(1–2), 59–69.

34. Hejazi R., Amiji M. Chitosan-based gastrointestinal delivery systems. J. Control. Release 2003; 89(2), 151–165.

35. Phromsopha T., Baimark Y. Chitosan microparticles prepared by the water-in-oil emulsion solvent diffusion method for drug delivery. Biotechnology 2010; 9(1), 61–66.

36. Goudanavar P., Bagali R., Chandrashekhara A., Patil S. M. Design and characterization of diclofenac sodium microbeads by ionotropic gelation technique. Int. J. Pharm. Bio. Sci. 2010; 1(2), 1–10.

37. Sinha V. R, Singla A. K., Wadhawan S., Kaushik R., Kumria R., Bansal K., Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 2004; 274(1–2), 1–33.

38. Saleem M. A., Murali Y. D., Naheed M. D., Jaydeep P., Dhaval M. Prepapation and evaluation of valsartan loaded hydrogel beads. IRJP 2012; 3(6), 80–85.

39. Wang CH., Fu X., Yang L. Water-soluble chitosan nanoparticles as a novel carrier system for protein delivery. Chin. Sci. Bull. 2007; 52(7), 883–889.

40. Prasanth V. V., Chakraborty A., Mathew S. T., Parthasarathy G., Mathappan R., Thoppil S. CH. Formulation and evaluation of salbutamol sulphate - alginate microspheres by ionotropic gelation method. Pharmacie Globale 2011; 2(7), 1–4.

41. Silva C. M., Ribeiro A. J., Figueiredo I. V., Gonçalves A. R., Veiga F. Alginate microspheres prepared by internal gelation: Development and effect on insulin stability. Int. J. Pharm. 2006; 311(1–2), 1–10.

42. Giry K., Viana M., Genty M., Louvet F., Wüthrich P., Chulia D. Comparison of single pot and multiphase granulation. Part 1: Effect of the high shear granulator on granule properties according to the drug substance and its concentration. Pharm. Dev. Technol. 2009; 14(2), 138–148.

43. Simonoska Crcarevska M., Glavas Dodov M., Goracinova K. Chitosan coated Ca-alginate microparticles loaded with budesonide for delivery to the inflamed colonic mucosa. Eur. Biopharm. 2008; 68(3), 565–578.

44. Smrdel P., Bogataj M., Podlogar F., Planinsek O., Zajc N., Mazaj M., Kaucic V., Mrhar A. Characterization of calcium alginate beads containing structurally similar drugs. Drug Dev. Ind. Pharm. 2006; 32(5), 623–633.

45. Bajerová M., Dvořáčková K., Gajdziok J., Masteiková R. Mikročástice na bázi oxycelulosy – vliv procesních proměnných na enkapsulační účinnost. Čes. slov. Farm. 2010; 59(2), 67–73.

46. Williams C., Panaccione R., Ghosh S., Rioux K. Optimizing clinical use of mesalazine (5-aminosalicylic acid) in inflammatory bowel disease. Therap. Adv. Gastroenterol. 2011; 4(4), 237–248.

47. Singh M. P., Alam G., Patel R. In vitro evaluation of polymeric beads of riboflavin formulated at different cross-linking time. Der Pharmacia Lettre. 2010; 2(4), 164–171.

48. Tungtong S., Okonogi S., Chowwanapoonpohn S., Phutdhawong W., Yotsawimonwat S. Solubility, viscosity and rheological properties of water - soluble chitosan derivatives. Maejo Int. J. Sci. Technol. 2012; 6(2), 315–322.

49. Barba A. A., Dalmoro A., D’Amore M., Lamberti G. Controlled release of drugs from microparticles produced by ultrasonic assisted atomization based on biocompatible polymers. Chem. Biochem. Eng. 2012; 26(4), 345–353.

Štítky
Farmacie Farmakologie

Článek vyšel v časopise

Česká a slovenská farmacie

Číslo 2

2014 Číslo 2
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autoři: MUDr. Tomáš Ürge, PhD.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Aktuální možnosti diagnostiky a léčby AML a MDS nízkého rizika
Autoři: MUDr. Natália Podstavková

Možnosti léčby časné imunitní trombocytopenie (ITP) u dospělých pacientů
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#