#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Herpes simplex virus infection: an overview of the problem, pharmacologic therapy and dietary measures


Authors: Sherif T. S. Hassan;  Miroslava Šudomová;  Radka Masarčíková
Published in the journal: Čes. slov. Farm., 2017; 66, 95-102
Category: Přehledy a odborná sdělení

Summary

Treatment of infectious diseases remains one of the principal research target for many researchers and healthcare providers worldwide. Herpes simplex virus 1 (HSV-1) and herpes simplex virus 2 (HSV-2) are common human pathogens with an estimated 60–95% of the adult population infected by at least one of them. The worldwide disease burden of HSV is substantial, and acyclovir and related nucleoside analogues (viral DNA polymerase inhibitors) as therapies have led to significantly increased treatment efficacy of HSV infections. Although the treatment of HSV infection has greatly advanced through the use of nucleoside analogues therapy, the treatment efficacy has decreased significantly. This is due to the extensive use of nucleoside analogues drugs, which has created drug resistance, associated with other adverse effects as well. In this review, we aim to shed light on the HSV infection, the current pharmacologic treatment, and the use of dietary measures as alternative therapy option.

Key words:
HSV infection • dietary measures • antiviral drugs • nucleoside analogues • natural compounds


Zdroje

1. Abad M. J., Bermejo P., Gonzales E., Iglesias I., Irurzun A., Carrasco L. Antiviral activity of Bolivian plant extracts. Gen Pharmacol. 1999; 32(4), 499–503.

2. Albiol Matanic V. C., Castilla V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents 2004; 23(4), 382–389.

3. Andrighetti-Fröhner C. R., Sincero T. C., da Silva A. C., Savi L. A., Gaido C. M., Bettega J. M., et al. Antiviral evaluation of plants from Brazilian Atlantic Tropical Forest. Fitoterapia 2005; 76(3–4), 374–378.

4. Cardozo F. T., Camelini C. M., Mascarello A., Rossi M. J., Nunes R. J., Barardi C. R., et al. Antiherpetic activity of a sulfated polysaccharide from Agaricus brasiliensis mycelia. Antiviral Res. 2011; 92(1), 108–114.

5. Chattopadhyay K., Ghosh T., Pujol C. A., Carlucci M. J., Damonte E. B., Ray B. Polysaccharides from Gracilaria corticata: Sulfation, chemical characterization and anti-HSV activities. Int J Biol Macromol. 2008; 43(4), 346–351.

6. Debbab A., Aly A. H., Lin W. H., Proksch P. Bioactive compounds from marine bacteria and fungi. Microb. Biotechnol. 2010; (3), 544–563.

7. Duarte M. E., Noseda D. G., Noseda M. D., Tulio S., Pujol C. A., Damonte E. B. Inhibitory effect of sulfated galactans from the marine alga Bostrychia montagnei on herpes simplex virus replication in vitro. Phytomedicine 2001; (8), 53–58.

8. Eo S. K., Kim Y. S., Lee C. K., Han S. S. Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses. J. Ethnopharmacol. 2000; 72(3), 475–481.

9. Evans C. M., Kudesia G., McKendrick M. Management of herpesvirus infections. Int J Antimicrob Agents 2013; 42(2), 119–128.

10. Férir G., Petrova M. I., Andrei G., Huskens D., Hoorelbeke B., Snoeck R., et al. The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One 2013; 8(5), e64010.

11. Field H. J. Persistent herpes simplex virus infection and mechanisms of virus drug resistance. Eur. J. Clin. Microbiol. Infect. Dis. 1989; 8, 671–680.

12. Flowerdew S. E., Wick D., Himmelein S., Horn A. K., Sinicina I., Strupp M., et al. Characterization of neuronal populations in the human trigeminal ganglion and their association with latent herpes simplex virus-1 infection. PLoS One 2013; 8(12), e83603.

13. Frobert E., Burrel S., Ducastelle-Lepretre S., Billaud G., Ader F., et al. Resistance of herpes simplex viruses to acyclovir: An update from a ten-year survey in France. Antiviral Res. 2014; 111C, 36–41.

14. Gu C. Q., Li J. W., Chao F, Jin M, Wang X. W., Shen Z. Q. Isolation, identification and function of a novel anti-HSV-1 protein from Grifola frondosa. Antiviral Res. 2007; 75(3), 250–257.

15. Hamza M. A., Higgins D. M., Ruyechan W. T. Two alphaherpesvirus latency-associated gene products influence calcitonin gene-related peptide levels in rat trigeminal neurons. Neurobiol Dis. 2007; 25(3), 553–560.

16. Hassan S. T. S., Majerová M., Šudomová M., Berchová K. Antibacterial activity of natural compounds – essential oils. Čes. slov. Farm. 2015; 64(6), 243–253.

17. Hassan S. T. S., Masarčíková R., Berchová K. Bioactive natural products with anti–herpes simplex virus properties. J. Pharm. Pharmacol. 2015; 67(10), 1325–1336.

18. Hayashi T., Hayashi K., Maeda M., Kojima I. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J. Nat. Prod. 1996; 59(1), 83–87.

19. Hong W., Li T., Song Y., Zhang R., Zeng Z., Han S., et al. Inhibitory activity and mechanism of two scorpion venom peptides against herpes simplex virus type 1. Antiviral Res. 2014; 102, 1–10.

20. Huleihel M., Isanu V. Anti-herpes simplex virus effect of an aqueous extract of propolis. Isr. Med. Assoc. J. 2002; 4(11 Suppl), 923–927.

21. Ichiba T., Corgiat J. M., Scheuer P. J., Kelly-Borges M. 8-Hydroxymanzamine A, a beta-carboline alkaloid from a sponge, Pachypellina sp. J. Nat. Prod. 1994; 57(1), 168–170.

22. Imura K., Chambers J. K., Uchida K., Nomura S., Suzuki S., Nakayama H., Miwa Y. Herpes Simplex Virus Type 1 Infection in Two Pet Marmosets in Japan. J. Vet. Med. Sci. 2014; 76(12), 1667–1670.

23. Jenssen H., Hamill P., Hancock R. E. Peptide Antimicrobial Agents. Clin. Microbiol. Rev. 2006; 19(3), 491–511.

24. Jenssen H. Anti herpes simplex virus activity of lactoferrin/lactoferricin – an example of antiviral activity of antimicrobial protein/peptide. Cell Mol. Life Sci. 2005; 62(24), 3002–3013.

25. Kitazato K., Wang Y., Kobayashi N. Viral infectious disease and natural products with antiviral activity. Drug Discov. Ther. 2007; 1(1), 14–22.

26. Kleymann G. Agents and strategies in development for improved management of herpes simplex virus infection and disease. Expert Opin Investig Drugs 2005; 14(2), 135–161.

27. Kopp S. J., Ralay Ranaivo H., Wilcox D. R., Karaba A. H., Wainwright M. S., Muller W. J. Herpes simplex virus serotype and entry receptor availability alter CNS disease in a mouse model of neonatal HSV. Pediatr. Res. 2014; 8.

28. Levin M. J., Bacon T. H., Leary J. J. Resistance of herpes simplex virus infections to nucleoside analogues in HIV-infected patients. Clin. Infect. Dis. 2004; 39(Suppl 5), S248–257.

29. Mirchandani D., Jawed R., Khawar N., Narula P., John M. Effectiveness of early antiviral therapy in disseminated neonatal herpes simplex virus 2 (HSV–2) with fulminant hepatic failure. Am. J. Case Rep. 2017; 18, 381–385.

30. Li T., Peng T. Traditional Chinese herbal medicine as a source of molecules with antiviral activity. Antiviral Res. 2013; 97(1), 1–9.

31. Mandal P., Pujol C. A., Damonte E. B., Ghosh T., Ray B. Xylans from Scinaia hatei: Structural features, sulfation and anti-HSV activity. Int. J. Biol. Macromol. 2010; 46(2), 173–178.

32. Markham A., Faulds D. Ganciclovir. An update of its therapeutic use in cytomegalovirus infection. Drugs 1994; 48, 455–484.

33. You H., Yuan H., Fu W., Su C., Wang W., Cheng T., Zheng C. Herpes simplex virus type 1 abrogates the antiviral activity of Ch25h via its virion host shutoff protein. Antiviral Res. 2017; 143, 69–73.

34. Newman D., Cragg G. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 2004; (67), 1216–1238.

35. Palem J. R., Bedadala G. R., El Sayed K. A., Hsia S. C. Manzamine A as a Novel Inhibitor of Herpes Simplex Virus Type-1 Replication in Cultured Corneal Cells. Planta Med. 2011; 77(1), 46–51.

36. Paludan S. R., Bowie A. G., Horan K. A., Fitzgerald K. A. Recognition of herpesviruses by the innate immune system. Nat. Rev. Immunol. 2011; 11, 143–154.

37. Penesyan A., Kjelleberg S., Egan S. Development of novel drugs from marine surface associated microorganisms. Mar. Drugs 2010; 8(3), 438–459.

38. Perry N. B, Blunt J. W, Munro M. H. G, Thompson A. M. Antiviral and antitumor agents from a New Zealand sponge, Mycale sp. 2. Structures and solution conformations of mycalamides A and B. J. Org. Chem. 1990; 55(1), 223–227.

39. Piret J., Boivin G. Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob. Agents Chemother. 2011; 55(2), 459–472.

40. Reusser P. Herpesvirus resistance to antiviral drugs: a review of the mechanisms, clinical importance and therapeutic options. J. Hosp. Infect. 1996; 33(4), 235–248.

41. Bartosová D., Klapácová L., Gruber J. Eczema herpeticum in children: clinical picture and therapy. Cesk Pediatr. 1992; 47(5), 289–292.

42. Sagar S., Kaur M., Minneman K. P. Antiviral Lead Compounds from Marine Sponges. Mar. Drugs 2010; 8(10), 2619–2638.

43. Sakai R., Higa T., Jefford C. W., Bernardinelli G. Manzamine A, a novel antitumor alkaloid from a sponge. J. Am. Chem. Soc. 1986; 108, 6404–6405.

44. Sartori G., Pesarico A. P., Pinton S., Dobrachinski F., Roman S. S., Pauletto F., Junior L. C., Prigol M. Protective effect of brown Brazilian propolis against acute vaginal lesions caused by herpes simplex virus type 2 in mice: involvement of antioxidant and anti-inflammatory mechanisms. Cell Biochem. Funct. 2012; 30(1), 1–10.

45. Schnitzler P., Neuner A., Nolkemper S., Zundel C., Nowack H., Sensch K. H., et al. Antiviral activity and mode of action of propolis extracts and selected compounds. Phytother. Res. 2010; 24(Suppl 1), S20–28.

46. Shannon T. E., Griffin S. L. Managing aggression in global amnesia following herpes simplex virus encephalitis: The case of E. B. Brain Inj. 2014; 19, 1–7.

47. Shestakov A., Jenssen H., Hancock R. E., Nordström I., Eriksson K. Synthetic analogues of bovine bactenecin dodecapeptide reduce herpes simplex virus type 2 infectivity in mice. Antiviral Res. 2013; 100(2), 455–459.

48. Simpson D., Lyseng-Williamson K. A. Famciclovir: a review of its use in herpes zoster and genital and orolabial herpes. Drugs 2006; 66, 2397–2416.

49. Soltan M. M., Zaki A. K. Antiviral screening of forty-two Egyptian medicinal plants. J. Ethnopharmacol. 2009; 126(1), 102–107.

50. Souza T. M., Abrantes J. L., de Epifanio A. R., Leite Fontes C. F., Frugulhetti I. C. The alkaloid 4-methylaaptamine isolated from the sponge Aaptos aaptos impairs Herpes simplex virus type 1 penetration and immediate-early protein synthesis. Planta Med. 2007; 73(3), 200–205.

51. Talarico L. B., Zibetti R. G., Faria P. C., Scolaro L. A., Duarte M. E., Noseda M. D., et al. Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int. J. Biol. Macromol. 2004; 34(1–2), 63–71.

52. Tan H. H., Goh C. L. Viral infections affecting the skin in organ transplant recipients: epidemiology and current management strategies. Am. J. Clin. Dermatol. 2006; 7(1), 13–29.

53. Villarreal E. C. Current and potential therapies for the treatment of herpesvirus infections. Prog. Drug Res. 2001; 56, 77–120.

54. Yasin B., Pang M., Turner J. S., Cho Y., Dinh N. N., Waring A. J., et al. Evaluation of the inactivation of infectious herpes simplex virus by host-defense peptides. Eur. J. Clin. Microbiol. Infect. Dis. 2000; 19(3), 187–194.

55. Yeung-Yue K. A., Brentjens M. H., Lee P. C., Tyring S. K. The management of herpes simplex virus infections. Curr. Opin. Infect. Dis. 2002; 15(2), 115–122.

56. Yoosook C., Bunyapraphatsara N., Boonyakiat Y., Kantasuk C. Anti-herpes simplex virus activities of crude water extracts of Thai Medicinal Plants. Phytomedicine 2000; 6(6), 411–419.

57. Hassan S. T. S., Berchová-Bímová K., Petráš J. Plumbagin, a plant-derived compound, exhibits antifungal combinatory effect with amphotericin B against Candida albicans clinical isolates and anti-hepatitis C virus activity. Phytother. Res. 2016; 30(9), 1487–1492.

58. Faulkner D. J. Marine natural products. Nat. Prod. Rep. Nat Prod Rep. 2002; 19(1), 1–48.

Štítky
Farmacie Farmakologie

Článek vyšel v časopise

Česká a slovenská farmacie

Číslo 3

2017 Číslo 3
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Důležitost adherence při depresivním onemocnění
nový kurz
Autoři: MUDr. Eliška Bartečková, Ph.D.

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková, Ph.D.

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Multidisciplinární zkušenosti u pacientů s diabetem
Autoři: Prof. MUDr. Martin Haluzík, DrSc., prof. MUDr. Vojtěch Melenovský, CSc., prof. MUDr. Vladimír Tesař, DrSc.

Všechny kurzy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#